No photo of Boqian Wu

Boqian Wu


Research activity per year

If you made any changes in Pure these will be visible here soon.

Personal profile

Personal profile

Dynamic sparse training algorithms have shown promise in achieving high performance while reducing resource costs, making them an attractive option in machine learning. However, despite their potential, the theoretical properties of dynamic sparse training remain largely unexplored. My research aims to fill this knowledge gap by investigating the theoretical properties of sparse training models. As a result, guidelines will be developed for applying dynamic sparse training to real-world problems.


Dive into the research topics where Boqian Wu is active. These topic labels come from the works of this person. Together they form a unique fingerprint.
  • 1 Similar Profiles

Collaborations and top research areas from the last five years

Recent external collaboration on country/territory level. Dive into details by clicking on the dots or