Calculated based on number of publications stored in Pure and citations from Scopus
1989 …2022

Research activity per year

If you made any changes in Pure these will be visible here soon.
Filter
Conference contribution

Search results

  • 2020

    Temporal exceptional model mining using dynamic Bayesian networks

    Bueno, M. L. P., Hommersom, A. & Lucas, P. J. F., 2020, Advanced Analytics and Learning on Temporal Data - 5th ECML PKDD Workshop, AALTD 2020, Revised Selected Papers. Lemaire, V., Malinowski, S., Bagnall, A., Guyet, T., Tavenard, R. & Ifrim, G. (eds.). Springer, p. 97-112 16 p. (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); vol. 12588 LNAI).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

    Open Access
    File
    2 Citations (Scopus)
    8 Downloads (Pure)
  • 2019

    A Data-Driven Exploration of Hypotheses on Disease Dynamics

    Bueno, M. L. P., Hommersom, A., Lucas, P. J. F. & Janzing, J., 2019, Artificial Intelligence in Medicine: 17th Conference on Artificial Intelligence in Medicine, AIME 2019, Poznan, Poland, June 26–29, 2019, Proceedings. Cham: Springer, p. 170-179 (Lecture Notes in Computer Science; vol. 11526).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

  • 2018

    An improved diagnostic method for probabilistic consistency-based diagnosis

    de Paula Bueno, M. L., Hommersom, A. & Lucas, P., 2018, 28th International Workshop on Principles of Diagnosis (DX '17). Zanella, M., Pill, I. & Cimatti, A. (eds.). EasyChair, Vol. 4. p. 65-77 13 p. (Kalpa Publications in Computing).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

    Open Access
    File
  • Making continuous time Bayesian networks more flexible

    Liu, M., Stella, F., Hommersom, A. & Lucas, P. J. F., 2018, Proceedings of the Ninth International Conference on Probabilistic Graphical Models: 11-14 September 2018, Prague, Czech Republic. Kratochvíl, V. & Studený, M. (eds.). MLResearchPress, p. 237-248 12 p. (Proceedings of Machine Learning Research (PMLR); vol. 72).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

    Open Access
    File
  • Modeling the dynamics of multiple disease occurrence by latent states

    Bueno, M. L. P., Hommersom, A., Lucas, P. J. F., Lobo, M. & Rodrigues, P. P., 2018, Scalable Uncertainty Management : 12th International Conference, SUM 2018, Milan, Italy, October 3-5, 2018, Proceedings. Ciucci, D., Pasi, G. & Vantaggi, B. (eds.). Cham: Springer, p. 93-107 15 p. (Lecture Notes in Computer Science; vol. 11142).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

    3 Citations (Scopus)
  • Parallel probabilistic inference by weighted model counting

    Dal, G. H., Laarman, A. W. & Lucas, P. J. F., 2018, Proceedings of the Ninth International Conference on Probabilistic Graphical Models: 11-14 September 2018, Prague, Czech Republic. Kratochvíl, V. & Studený, M. (eds.). MLResearchPress, p. 97-108 12 p. (Proceedings of Machine Learning Research (PMLR); vol. 72).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

    Open Access
    File
  • Representing hypoexponential distributions in continuous time Bayesian networks

    Liu, M., Stella, F., Hommersom, A. & Lucas, P. J. F., 2018, Information Processing and Management of Uncertainty in Knowledge-Based Systems. Applications: 17th International Conference, IPMU 2018, Cádiz, Spain, June 11-15, 2018, Proceedings, Part III. Perfilieva, I., Medina, J., Ojeda-Aciego, M., Yager, R. R., Verdegay, J. L. & Bouchon-Meunier, B. (eds.). Cham: Springer, p. 565-577 13 p. (Communications in Computer and Information Science; vol. 855).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

  • 2017

    Reducing the cost of probabilistic knowledge compilation

    Dal, G., Michels, S. & Lucas, P. J. F., 2017, Proceedings of Machine Learning Research: Advanced Methodologies for Bayesian Networks, 20-22 September 2017. Vol. 73. p. 141-152 12 p.

    Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

    Open Access
    File
    3 Downloads (Pure)
  • 2016

    Approximate probabilistic inference with bounded error for hybrid probabilistic logic programming

    Michels, S., Hommersom, A. & Lucas, P. J. F., 2016, IJCAI'16: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence. Brewka, G. (ed.). New York, NY: AAAI Press, p. 3616-3622 7 p. (IJCAI International Joint Conference on Artificial Intelligence; vol. 2016, no. 25).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

    6 Citations (Scopus)
  • Learning complex uncertain states changes via asymmetric hidden Markov models: an industrial case

    Bueno, M. L. P., Hommersom, A., Lucas, P. J. F., Verwer, S. & Linard, A., 2016, Conference on Probabilistic Graphical Models, 6-9 September 2016, Lugano, Switzerland. Antonucci, A., Corani, G. & Polpo Campos, C. (eds.). MLResearchPress, p. 50–61 (Proceedings of Machine Learning Research (PMLR); vol. 52).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

    Open Access
    File
  • Learning parameters of hybrid time Bayesian networks

    Liu, M., Hommersom, A., Hommersom, A., van der Heijden, M. & Lucas, P. J. F., 2016, Conference on Probabilistic Graphical Models, 6-9 September 2016, Lugano, Switzerland. Antonucci, A., Corani, G. & Polpo Campos, C. (eds.). MLResearchPress, p. 287-298 12 p. (Proceedings of Machine Learning Research (PMLR); vol. 52).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

    Open Access
    File
  • 2014

    Imprecise probabilistic horn clause logic

    Michels, S., Hommersom, A., Lucas, P. J. F. & Velikova, M., 2014, ECAI 2014: 21st European Conference on Artificial Intelligence, 18-24 August 2014, Prague, Czech Republic. Schaub, T., Friedrich, G. & O'Sullivan, B. (eds.). IOS Press, p. 621-626 6 p. (Frontiers in Artificial Intelligence and Applications; vol. 263).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

    Open Access
    File
    1 Citation (Scopus)
  • 2013

    MoSHCA - My mobile and smart health care assistant

    Hommersom, A., Lucas, P. J. F., Velikova, M., Dal, G., Bastos, J., Rodriguez, J., Germs, M. & Schwietert, H., 2013, 2013 IEEE 15th International Conference on e-Health Networking, Applications and Services, Healthcom 2013. Piscataway, NJ: IEEE, p. 188-192 5 p. 6720664

    Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

    26 Citations (Scopus)
  • Understanding the co-occurrence of diseases using structure learning

    Lappenschaar, M., Hommersom, A., Lagro, J. & Lucas, P. J. F., 2013, Artificial Intelligence in Medicine: 14th Conference on Artificial Intelligence in Medicine, AIME 2013, Murcia, Spain, May 29 -- June 1, 2013, Proceedings. Peek, N., Marín Morales, R. & Peleg, M. (eds.). Berlin, Heidelberg: Springer, p. 135-144 10 p. (Lecture Notes in Computer Science; vol. 7885)(Lecture Notes in Artificial Intelligence).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

    10 Citations (Scopus)
  • 2012

    A framework for development, teaching and deployment of inference algorithms

    Evers, S. & Lucas, P. J. F., 2012, Proceedings of the 6th European Workshop on Probabilistic Graphical Models, PGM'12: Granada, Spain, September 19-21, 2012. Nielsen, T. D., Cano, A. & Gomez-Olmedo, M. (eds.). Granada: University of Granada, p. 99-106 8 p.

    Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

    Open Access
    File
  • A Semi-Causal Bayesian Network Approach to Prognosis

    Hommersom, A., Lucas, P. J. F., van Altena, A. M., Massuger, L. F. A. G. & Kiemeney, L. A., 2012, Proceedings of the 29th International Conference on Machine Learning, Edingburgh, Scotland, June 26-July 1, 2012. Langford, J. (ed.). OmniPress, 8 p.

    Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

    Open Access
    File
  • 2011

    A predictive Bayesian network model for home management of preeclampsia

    Velikova, M., Lucas, P. J. F. & Spaanderman, M., 2011, Artificial Intelligence in Medicine: 13th Conference on Artificial Intelligence in Medicine, AIME 2011, Bled, Slovenia, July 2-6, 2011, Proceedings. Peleg, M., Lavrač, N. & Combi, C. (eds.). Berlin, Heidelberg: Springer, p. 179-183 5 p. (Lecture Notes in Computer Science; vol. 6747).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

    4 Citations (Scopus)