300 Faces In-The-Wild Challenge: database and results

Christos Sagonas, Epameinondas Antonakos, Georgios Tzimiropoulos, Stefanos Zafeiriou, Maja Pantic

    Research output: Contribution to journalArticleAcademicpeer-review

    250 Citations (Scopus)

    Abstract

    Computer Vision has recently witnessed great research advance towards automatic facial points detection. Numerous methodologies have been proposed during the last few years that achieve accurate and efficient performance. However, fair comparison between these methodologies is infeasible mainly due to two issues. (a) Most existing databases, captured under both constrained and unconstrained (in-the-wild) conditions have been annotated using different mark-ups and, in most cases, the accuracy of the annotations is low. (b) Most published works report experimental results using different training/testing sets, different error metrics and, of course, landmark points with semantically different locations. In this paper, we aim to overcome the aforementioned problems by (a) proposing a semi-automatic annotation technique that was employed to re-annotate most existing facial databases under a unified protocol, and (b) presenting the 300 Faces In-The-Wild Challenge (300-W), the first facial landmark localization challenge that was organized twice, in 2013 and 2015. To the best of our knowledge, this is the first effort towards a unified annotation scheme of massive databases and a fair experimental comparison of existing facial landmark localization systems. The images and annotations of the new testing database that was used in the 300-W challenge are available from http://ibug.doc.ic.ac.uk/resources/300-W_IMAVIS/.
    Original languageUndefined
    Pages (from-to)3-18
    Number of pages16
    JournalImage and vision computing
    Volume47
    DOIs
    Publication statusPublished - Mar 2016

    Keywords

    • EC Grant Agreement nr.: FP7/645094
    • HMI-HF: Human Factors
    • EWI-27127
    • IR-103792
    • Facial database
    • Facial landmark localization
    • Semi-automatic annotation tool
    • Challenge

    Cite this

    Sagonas, C., Antonakos, E., Tzimiropoulos, G., Zafeiriou, S., & Pantic, M. (2016). 300 Faces In-The-Wild Challenge: database and results. Image and vision computing, 47, 3-18. https://doi.org/10.1016/j.imavis.2016.01.002