3D Printing of a Photo-thermal Self-folding Actuator

Ali Zolfagharian*, Abbas Z. Kouzani, Bijan Nasri-Nasrabadi, Scott Adams, Sui Yang Khoo, Michael Norton, Ian Gibson, Akif Kaynak

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

45 Downloads (Pure)

Abstract

The demand for rapid and accurate fabrication of light-weight, biocompatible, and soft actuators in soft robotics has perused researchers to design and fabricate such products by rapid manufacturing techniques. The self-folding origami structure is a type of soft actuator that has applications in micro electro mechanical systems, soft electronics, and biomedical devices. 3-dimentional (3D) printing is a current manufacturing process that can be used for fabrication of involute soft self-folding products by means of shape memory polymer materials. This paper presents, for the first time, a method for developing a photo thermal self-folding soft actuator using a 3D bioplotter. Easily accessible and inexpensive pre-strained polystyrene is opted for the backbone of actuator. The polystyrene film (PS) is then structured in a hand shape gripper. Chitosan hydrogel and carbon black ink were combined for printing active hinges on the hand gripper. Various active hinges with different widths and thicknesses were printed on the hand gripper using the 3D bioplotter. An infra-red (IR) heating lamp was placed at a reasonable distance to emit IR light uniformly on the hand gripper. The temperature distribution on the hand gripper was observed using a thermographic camera and the bending angles of the samples were recorded by a video camera. It was observed that the bending angles of the hand fingers depend on factors such as the intensity of the heat flux generated by the IR light intensity, distance, onset temperature, geometry of the fingers such as width and thickness, and area of the hinges.
Original languageEnglish
Title of host publicationDesTech 2016: Proceedings of the International Conference on Design and Technology
PublisherKnowledgeE
Pages15-22
DOIs
Publication statusPublished - 9 Feb 2017
Externally publishedYes

Fingerprint

Dive into the research topics of '3D Printing of a Photo-thermal Self-folding Actuator'. Together they form a unique fingerprint.

Cite this