A 16×16 45° Slant-Polarized Gapwaveguide Phased Array with 65 dBm EIRP at 28 GHz

Alireza Bagheri, Hanna Karlsson, Carlo Bencivenni, Magnus Gustafsson, Thomas Emanelsson, Marcus Hasselblad, Andrés Alayón Glazunov

Research output: Contribution to journalArticleAcademicpeer-review

9 Citations (Scopus)
156 Downloads (Pure)

Abstract

A high equivalent isotropic radiated power (EIRP) active phased array antenna is proposed for 5G communication systems at 28 GHz. The numerical design, the measurements of a fabricated prototype and the performance analysis are presented. The antenna design is based on the gapwaveguide technology and consists of 16×16 single 45° slant-polarized elements. The proposed design employs a low complexity printed circuit board (PCB) structure with only six layers, i.e., a half of existing wideband solutions. The array antenna incorporates up/downconverter integrated circuits (UDCs) and 1×4 transceiver beamformer integrated circuits (BFICs). Moreover, a compact and highly efficient transition at the end of each channel of the BFICs has been designed to interconnect the antenna elements with the PCB. The antenna’s frontend loss, which includes the feed line, mismatch, and ohmic losses, is only 1.3 dB. The array covers the scanning range of ±60° in the azimuth plane and ±10° in the elevation plane. The S 11 < -10 dB frequency bandwidth is from 26.5-29.5 GHz. The maximum EIRP of the antenna is 65.5 dBm at saturation point. The presented design offers a compact, robust and low loss performance solution meeting the high transmission power requirements of 5G applications.
Original languageEnglish
JournalIEEE transactions on antennas and propagation
Volume17
Issue number2
Early online date13 Dec 2022
DOIs
Publication statusPublished - 2023

Keywords

  • n/a OA procedure

Fingerprint

Dive into the research topics of 'A 16×16 45° Slant-Polarized Gapwaveguide Phased Array with 65 dBm EIRP at 28 GHz'. Together they form a unique fingerprint.

Cite this