A Bootstrap Test for Independence of Time Series Based on the Distance Covariance

Annika Betken, Herold Dehling, Marius Kroll

Research output: Working paperPreprintAcademic

54 Downloads (Pure)

Abstract

We present a test for independence of two strictly stationary time series based on a bootstrap procedure for the distance covariance. Our test detects any kind of dependence between the two time series within an arbitrary maximum lag $L$. In simulation studies, our test outperforms alternative testing procedures. In proving the validity of the underlying bootstrap procedure, we generalise bounds for the Wasserstein distance between an empirical measure and its marginal distribution under the assumption of $\alpha$-mixing. Previous results of this kind only existed for i.i.d. processes.
Original languageEnglish
PublisherArXiv.org
DOIs
Publication statusPublished - 28 Dec 2021

Keywords

  • math.ST
  • stat.TH
  • Primary: 62G10, 62F40, Secondary: 62H20, 60F25

Fingerprint

Dive into the research topics of 'A Bootstrap Test for Independence of Time Series Based on the Distance Covariance'. Together they form a unique fingerprint.

Cite this