A comparison of boundary element and finite element methods for modeling axisymmetric polymeric drop deformation

Russell Hooper, E.M. Toose, Christopher W. Macosko, Jeffrey J. Derby

Research output: Contribution to journalArticleAcademic

13 Citations (Scopus)


A modified boundary element method (BEM) and the DEVSS-G finite element method (FEM) are applied to model the deformation of a polymeric drop suspended in another fluid subjected to start-up uniaxial extensional flow. The effects of viscoelasticity, via the Oldroyd-B differential model, are considered for the drop phase using both FEM and BEM and for both the drop and matrix phases using FEM. Where possible, results are compared with the linear deformation theory. Consistent predictions are obtained among the BEM, FEM, and linear theory for purely Newtonian systems and between FEM and linear theory for fully viscoelastic systems. FEM and BEM predictions for viscoelastic drops in a Newtonian matrix agree very well at short times but differ at longer times, with worst agreement occurring as critical flow strength is approached. This suggests that the dominant computational advantages held by the BEM over the FEM for this and similar problems may diminish or even disappear when the issue of accuracy is appropriately considered. Fully viscoelastic problems, which are only feasible using the FEM formulation, shed new insight on the role of viscoelasticity of the matrix fluid in drop deformation.
Original languageUndefined
Pages (from-to)837-864
JournalInternational journal for numerical methods in fluids
Issue number7
Publication statusPublished - 2001


  • Finite Element Method
  • Boundary element method
  • Axisymmetric polymeric drop deformation
  • IR-71672
  • Modeling

Cite this