A comparison of sLASER and MEGA-sLASER using simultaneous interleaved acquisition for measuring GABA in the human brain at 7T

Donghyun Hong, Seyedmorteza Rohani Rankouhi, Jan Willem Thielen, Jack J.A. Van Asten, David G. Norris

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

γ-Aminobutyric acid (GABA), the major inhibitory neurotransmitter, is challenging to measure using proton spectroscopy due to its relatively low concentration, J-coupling and overlapping signals from other metabolites. Currently, the prevalent methods for detecting GABA at ultrahigh field strengths (≥ 7 T) are GABA-editing and model fitting of non-editing single voxel spectra. These two acquisition approaches have their own advantages: the GABA editing approach directly measures the GABA resonance at 3 ppm, whereas the fitting approach on the non-editing spectrum allows the detection of multiple metabolites, and has an SNR advantage over longer echo time (TE) acquisitions. This study aims to compare these approaches for estimating GABA at 7 T. We use an interleaved sequence of semi- LASER (sLASER: TE = 38 ms) and MEGA-sLASER (TE = 80 ms). This simultaneous interleaved acquisition minimizes the differential effect of extraneous factors, and enables an accurate comparison of the two acquisition methods. Spectra were acquired with an 8 ml isotropic voxel at six different brain regions: anterior-cingulate cortex, dorsolateral-prefrontal cortex, motor cortex, occipital cortex, posterior cingulate cortex, and precuneus. Spectral fitting with LCModel quantified the GABA to total Cr (tCr: Creatine + Phosphocreatine) concentration ratio. After correcting the T2 relaxation time variation, GABA/tCr ratios were similar between the two acquisition approaches. GABA editing showed smaller spectral fitting error according to Cramér-Rao lower bound than the sLASER approach for all regions examined. We conclude that both acquisition methods show similar accuracy but the precision of the MEGA-editing approach is higher for GABA measurement. In addition, the 2.28 ppm GABA resonance was found to be important for estimating GABA concentration without macromolecule contamination in the GABA-edited acquisition, when utilizing spectral fitting with LCModel.

Original languageEnglish
Article numbere0223702
JournalPLoS ONE
Volume14
Issue number10
DOIs
Publication statusE-pub ahead of print/First online - 11 Oct 2019

Fingerprint

gamma-aminobutyric acid
gamma-Aminobutyric Acid
Brain
brain
cortex
Gyrus Cinguli
Metabolites
phosphocreatine
metabolites
creatine
neurotransmitters
Aminobutyrates
protons
Occipital Lobe
spectroscopy
Parietal Lobe
Phosphocreatine
Creatine
Motor Cortex
methodology

Cite this

Hong, Donghyun ; Rankouhi, Seyedmorteza Rohani ; Thielen, Jan Willem ; Van Asten, Jack J.A. ; Norris, David G. / A comparison of sLASER and MEGA-sLASER using simultaneous interleaved acquisition for measuring GABA in the human brain at 7T. In: PLoS ONE. 2019 ; Vol. 14, No. 10.
@article{b7f8d2c75f9a46b097129185684c5fbe,
title = "A comparison of sLASER and MEGA-sLASER using simultaneous interleaved acquisition for measuring GABA in the human brain at 7T",
abstract = "γ-Aminobutyric acid (GABA), the major inhibitory neurotransmitter, is challenging to measure using proton spectroscopy due to its relatively low concentration, J-coupling and overlapping signals from other metabolites. Currently, the prevalent methods for detecting GABA at ultrahigh field strengths (≥ 7 T) are GABA-editing and model fitting of non-editing single voxel spectra. These two acquisition approaches have their own advantages: the GABA editing approach directly measures the GABA resonance at 3 ppm, whereas the fitting approach on the non-editing spectrum allows the detection of multiple metabolites, and has an SNR advantage over longer echo time (TE) acquisitions. This study aims to compare these approaches for estimating GABA at 7 T. We use an interleaved sequence of semi- LASER (sLASER: TE = 38 ms) and MEGA-sLASER (TE = 80 ms). This simultaneous interleaved acquisition minimizes the differential effect of extraneous factors, and enables an accurate comparison of the two acquisition methods. Spectra were acquired with an 8 ml isotropic voxel at six different brain regions: anterior-cingulate cortex, dorsolateral-prefrontal cortex, motor cortex, occipital cortex, posterior cingulate cortex, and precuneus. Spectral fitting with LCModel quantified the GABA to total Cr (tCr: Creatine + Phosphocreatine) concentration ratio. After correcting the T2 relaxation time variation, GABA/tCr ratios were similar between the two acquisition approaches. GABA editing showed smaller spectral fitting error according to Cram{\'e}r-Rao lower bound than the sLASER approach for all regions examined. We conclude that both acquisition methods show similar accuracy but the precision of the MEGA-editing approach is higher for GABA measurement. In addition, the 2.28 ppm GABA resonance was found to be important for estimating GABA concentration without macromolecule contamination in the GABA-edited acquisition, when utilizing spectral fitting with LCModel.",
author = "Donghyun Hong and Rankouhi, {Seyedmorteza Rohani} and Thielen, {Jan Willem} and {Van Asten}, {Jack J.A.} and Norris, {David G.}",
year = "2019",
month = "10",
day = "11",
doi = "10.1371/journal.pone.0223702",
language = "English",
volume = "14",
journal = "PLoS ONE",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "10",

}

A comparison of sLASER and MEGA-sLASER using simultaneous interleaved acquisition for measuring GABA in the human brain at 7T. / Hong, Donghyun; Rankouhi, Seyedmorteza Rohani; Thielen, Jan Willem; Van Asten, Jack J.A.; Norris, David G.

In: PLoS ONE, Vol. 14, No. 10, e0223702, 11.10.2019.

Research output: Contribution to journalArticleAcademicpeer-review

TY - JOUR

T1 - A comparison of sLASER and MEGA-sLASER using simultaneous interleaved acquisition for measuring GABA in the human brain at 7T

AU - Hong, Donghyun

AU - Rankouhi, Seyedmorteza Rohani

AU - Thielen, Jan Willem

AU - Van Asten, Jack J.A.

AU - Norris, David G.

PY - 2019/10/11

Y1 - 2019/10/11

N2 - γ-Aminobutyric acid (GABA), the major inhibitory neurotransmitter, is challenging to measure using proton spectroscopy due to its relatively low concentration, J-coupling and overlapping signals from other metabolites. Currently, the prevalent methods for detecting GABA at ultrahigh field strengths (≥ 7 T) are GABA-editing and model fitting of non-editing single voxel spectra. These two acquisition approaches have their own advantages: the GABA editing approach directly measures the GABA resonance at 3 ppm, whereas the fitting approach on the non-editing spectrum allows the detection of multiple metabolites, and has an SNR advantage over longer echo time (TE) acquisitions. This study aims to compare these approaches for estimating GABA at 7 T. We use an interleaved sequence of semi- LASER (sLASER: TE = 38 ms) and MEGA-sLASER (TE = 80 ms). This simultaneous interleaved acquisition minimizes the differential effect of extraneous factors, and enables an accurate comparison of the two acquisition methods. Spectra were acquired with an 8 ml isotropic voxel at six different brain regions: anterior-cingulate cortex, dorsolateral-prefrontal cortex, motor cortex, occipital cortex, posterior cingulate cortex, and precuneus. Spectral fitting with LCModel quantified the GABA to total Cr (tCr: Creatine + Phosphocreatine) concentration ratio. After correcting the T2 relaxation time variation, GABA/tCr ratios were similar between the two acquisition approaches. GABA editing showed smaller spectral fitting error according to Cramér-Rao lower bound than the sLASER approach for all regions examined. We conclude that both acquisition methods show similar accuracy but the precision of the MEGA-editing approach is higher for GABA measurement. In addition, the 2.28 ppm GABA resonance was found to be important for estimating GABA concentration without macromolecule contamination in the GABA-edited acquisition, when utilizing spectral fitting with LCModel.

AB - γ-Aminobutyric acid (GABA), the major inhibitory neurotransmitter, is challenging to measure using proton spectroscopy due to its relatively low concentration, J-coupling and overlapping signals from other metabolites. Currently, the prevalent methods for detecting GABA at ultrahigh field strengths (≥ 7 T) are GABA-editing and model fitting of non-editing single voxel spectra. These two acquisition approaches have their own advantages: the GABA editing approach directly measures the GABA resonance at 3 ppm, whereas the fitting approach on the non-editing spectrum allows the detection of multiple metabolites, and has an SNR advantage over longer echo time (TE) acquisitions. This study aims to compare these approaches for estimating GABA at 7 T. We use an interleaved sequence of semi- LASER (sLASER: TE = 38 ms) and MEGA-sLASER (TE = 80 ms). This simultaneous interleaved acquisition minimizes the differential effect of extraneous factors, and enables an accurate comparison of the two acquisition methods. Spectra were acquired with an 8 ml isotropic voxel at six different brain regions: anterior-cingulate cortex, dorsolateral-prefrontal cortex, motor cortex, occipital cortex, posterior cingulate cortex, and precuneus. Spectral fitting with LCModel quantified the GABA to total Cr (tCr: Creatine + Phosphocreatine) concentration ratio. After correcting the T2 relaxation time variation, GABA/tCr ratios were similar between the two acquisition approaches. GABA editing showed smaller spectral fitting error according to Cramér-Rao lower bound than the sLASER approach for all regions examined. We conclude that both acquisition methods show similar accuracy but the precision of the MEGA-editing approach is higher for GABA measurement. In addition, the 2.28 ppm GABA resonance was found to be important for estimating GABA concentration without macromolecule contamination in the GABA-edited acquisition, when utilizing spectral fitting with LCModel.

U2 - 10.1371/journal.pone.0223702

DO - 10.1371/journal.pone.0223702

M3 - Article

VL - 14

JO - PLoS ONE

JF - PLoS ONE

SN - 1932-6203

IS - 10

M1 - e0223702

ER -