Research output per year
Research output per year
Anne-Sophie Bonnet-Ben Dhia, Luiz M. Faria*, Carlos Pérez-Arancibia
Research output: Contribution to journal › Article › Academic › peer-review
This paper presents a novel boundary integral equation (BIE) formulation for the two-dimensional time-harmonic water-waves problem. It utilizes a complex-scaled Laplace free-space Green's function, resulting in a BIE posed on the infinite boundaries of the domain. The perfectly matched layer (PML) coordinate stretching that is used to render propagating waves exponentially decaying allows for the effective truncation and discretization of the BIE unbounded domain. We show through a variety of numerical examples that, despite the logarithmic growth of the complex-scaled Laplace free-space Green's function, the truncation errors are exponentially small with respect to the truncation length. Our formulation uses only simple function evaluations (e.g., complex logarithms and square roots), hence avoiding the need to compute the involved water-wave Green's function. Finally, we show that the proposed approach can also be used to find complex resonances through a linear eigenvalue problem since the Green's function is frequency-independent.
Original language | English |
---|---|
Pages (from-to) | 1532-1556 |
Number of pages | 25 |
Journal | SIAM journal on applied mathematics |
Volume | 84 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2024 |
Research output: Working paper › Preprint › Academic