TY - JOUR
T1 - A controlled release system for proteins based on poly(ether ester) block-copolymers
T2 - polymer network characterization
AU - Bezemer, J.M.
AU - Grijpma, D.W.
AU - Dijkstra, P.J.
AU - van Blitterswijk, C.A.
AU - Feijen, J.
PY - 1999
Y1 - 1999
N2 - The properties of a series of multiblock copolymers, based on hydrophilic poly(ethylene glycol) (PEG) and hydrophobic poly(butylene terephthalate) (PBT) blocks were investigated with respect to their application as a matrix for controlled release of proteins. The degree of swelling, Q, of the copolymers increased with increasing PEG content and with increasing molecular weight of the PEG segment. Within the composition range tested, Q varied from 1.26 for polymers with PEG segments of 600 g/mol and a PBT content of 60 weight.% up to 3.64 for polymers with PEG segments of 4000 g/mol and a PEG/PBT weight ratio of 80:20. Equilibrium stress (compression)–strain measurements were performed in order to estimate mesh sizes. The mesh size of the copolymers ranged from 38 to 93 Å, which was experimentally confirmed by diffusion of vitamin B12 (hydrodynamic diameter dh=16.6 Å), lysozyme (dh=41 Å) and bovine serum albumin (dh=72 Å). The in vitro degradation of PEG/PBT copolymers with a PEG block length of 1000 g/mol and PEG/PBT weight ratios of 70:30, 60:40 and 40:60 was studied. Matrices with increasing PEG contents exhibited a faster weight loss in phosphate-buffered saline (pH 7.4) at 37°C. Over a degradation period of 54 days, Mn decreased by about 35–45%, while the composition of the matrices, determined by NMR, remained almost constant.
AB - The properties of a series of multiblock copolymers, based on hydrophilic poly(ethylene glycol) (PEG) and hydrophobic poly(butylene terephthalate) (PBT) blocks were investigated with respect to their application as a matrix for controlled release of proteins. The degree of swelling, Q, of the copolymers increased with increasing PEG content and with increasing molecular weight of the PEG segment. Within the composition range tested, Q varied from 1.26 for polymers with PEG segments of 600 g/mol and a PBT content of 60 weight.% up to 3.64 for polymers with PEG segments of 4000 g/mol and a PEG/PBT weight ratio of 80:20. Equilibrium stress (compression)–strain measurements were performed in order to estimate mesh sizes. The mesh size of the copolymers ranged from 38 to 93 Å, which was experimentally confirmed by diffusion of vitamin B12 (hydrodynamic diameter dh=16.6 Å), lysozyme (dh=41 Å) and bovine serum albumin (dh=72 Å). The in vitro degradation of PEG/PBT copolymers with a PEG block length of 1000 g/mol and PEG/PBT weight ratios of 70:30, 60:40 and 40:60 was studied. Matrices with increasing PEG contents exhibited a faster weight loss in phosphate-buffered saline (pH 7.4) at 37°C. Over a degradation period of 54 days, Mn decreased by about 35–45%, while the composition of the matrices, determined by NMR, remained almost constant.
KW - Mesh size
KW - Degradation
KW - Block copolymer
KW - Permeability
KW - Protein release
U2 - 10.1016/S0168-3659(99)00170-4
DO - 10.1016/S0168-3659(99)00170-4
M3 - Article
SN - 0168-3659
VL - 62
SP - 393
EP - 405
JO - Journal of controlled release
JF - Journal of controlled release
IS - 3
ER -