A Dewetted-Dealloyed Nanoporous Pt Co-Catalyst Formed on TiO2 Nanotube Arrays Leads to Strongly Enhanced Photocatalytic H2 Production

Lei Ji, Davide Spanu, Nikita Denisov, Sandro Recchia, Patrik Schmuki*, Marco Altomare*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

27 Citations (Scopus)
5 Downloads (Pure)

Abstract

Pt nanoparticles are typically decorated as co-catalyst on semiconductors to enhance the photocatalytic performance. Due to the low abundance and high cost of Pt, reaching a high activity with minimized co-catalyst loadings is a key challenge in the field. We explore a dewetting-dealloying strategy to fabricate on TiO2 nanotubes nanoporous Pt nanoparticles, aiming at improving the co-catalyst mass activity for H2 generation. For this, we sputter first Pt-Ni bi-layers of controllable thickness (nm range) on highly ordered TiO2 nanotube arrays, and then induce dewetting-alloying of the Pt-Ni bi-layers by a suitable annealing step in a reducing atmosphere: the thermal treatment causes the Pt and Ni films to agglomerate and at the same time mix with each other, forming on the TiO2 nanotube surface metal islands of a mixed PtNi composition. In a subsequent step we perform chemical dealloying of Ni that is selectively etched out from the bimetallic dewetted islands, leaving behind nanoporous Pt decorations. Under optimized conditions, the nanoporous Pt-decorated TiO2 structures show a>6 times higher photocatalytic H2 generation activity compared to structures modified with a comparable loading of dewetted, non-porous Pt. We ascribe this beneficial effect to the nanoporous nature of the dealloyed Pt co-catalyst, which provides an increased surface-to-volume ratio and thus a more efficient electron transfer and a higher density of active sites at the co-catalyst surface for H2 evolution.

Original languageEnglish
Pages (from-to)301-309
Number of pages9
JournalChemistry - An Asian Journal
Volume15
Issue number2
Early online date2 Dec 2019
DOIs
Publication statusPublished - 17 Jan 2020
Externally publishedYes

Keywords

  • dewetting and dealloying
  • H generation
  • photocatalysis
  • porous Pt
  • TiO nanotubes

Fingerprint

Dive into the research topics of 'A Dewetted-Dealloyed Nanoporous Pt Co-Catalyst Formed on TiO2 Nanotube Arrays Leads to Strongly Enhanced Photocatalytic H2 Production'. Together they form a unique fingerprint.

Cite this