Abstract
A general concave ∞-horizon optimization model is analyzed with the help of a special convexity concept, which combines both the usual convexity and the dynamic structure. The axiomatic setup leads to a perfect symmetry between the primal and dual problems. After introducing a particular dynamic feasibility hypothesis, the following results are presented: (i) boundedness of trajectories as a necessary condition for optimally, (ii) the existence of primal and dual optimal trajectories, (iii) approximation by finite horizon models, and (iv) necessary and sufficient conditions for optimality.
Original language | Undefined |
---|---|
Pages (from-to) | 479-497 |
Journal | Mathematics of operations research |
Volume | 8 |
Issue number | 4 |
DOIs | |
Publication status | Published - 1983 |
Keywords
- IR-98488
- Dynamic convex optimization
- infinite-horizon optimization
- turnpike theory