A Family of Fibonacci-like Sequences

P.R.J. Asveld

    Research output: Contribution to journalArticleAcademicpeer-review

    17 Downloads (Pure)

    Abstract

    We consider the recurrence relation $G_n = G_{n-1} + G_{n-2} + \sum_{j=0}^k \alpha_j n^j$, where $G_0 = G_1 = 1$, and we express $G_n$ in terms of the Fibonacci numbers $F_n$ and $F_{n-1}$, and in the parameters $\alpha_1,\ldots,\alpha_k$.
    Original languageUndefined
    Pages (from-to)81-83
    Number of pages3
    JournalThe Fibonacci Quarterly
    Volume25
    Issue number1
    Publication statusPublished - 1987

    Keywords

    • HMI-SLT: Speech and Language Technology
    • MSC-11B39
    • EWI-3664
    • IR-65998

    Cite this

    Asveld, P. R. J. (1987). A Family of Fibonacci-like Sequences. The Fibonacci Quarterly, 25(1), 81-83.
    Asveld, P.R.J. / A Family of Fibonacci-like Sequences. In: The Fibonacci Quarterly. 1987 ; Vol. 25, No. 1. pp. 81-83.
    @article{2219f34977854d8ab50e67c8fefb8134,
    title = "A Family of Fibonacci-like Sequences",
    abstract = "We consider the recurrence relation $G_n = G_{n-1} + G_{n-2} + \sum_{j=0}^k \alpha_j n^j$, where $G_0 = G_1 = 1$, and we express $G_n$ in terms of the Fibonacci numbers $F_n$ and $F_{n-1}$, and in the parameters $\alpha_1,\ldots,\alpha_k$.",
    keywords = "HMI-SLT: Speech and Language Technology, MSC-11B39, EWI-3664, IR-65998",
    author = "P.R.J. Asveld",
    year = "1987",
    language = "Undefined",
    volume = "25",
    pages = "81--83",
    journal = "The Fibonacci Quarterly",
    issn = "0015-0517",
    publisher = "Fibonacci Association",
    number = "1",

    }

    Asveld, PRJ 1987, 'A Family of Fibonacci-like Sequences', The Fibonacci Quarterly, vol. 25, no. 1, pp. 81-83.

    A Family of Fibonacci-like Sequences. / Asveld, P.R.J.

    In: The Fibonacci Quarterly, Vol. 25, No. 1, 1987, p. 81-83.

    Research output: Contribution to journalArticleAcademicpeer-review

    TY - JOUR

    T1 - A Family of Fibonacci-like Sequences

    AU - Asveld, P.R.J.

    PY - 1987

    Y1 - 1987

    N2 - We consider the recurrence relation $G_n = G_{n-1} + G_{n-2} + \sum_{j=0}^k \alpha_j n^j$, where $G_0 = G_1 = 1$, and we express $G_n$ in terms of the Fibonacci numbers $F_n$ and $F_{n-1}$, and in the parameters $\alpha_1,\ldots,\alpha_k$.

    AB - We consider the recurrence relation $G_n = G_{n-1} + G_{n-2} + \sum_{j=0}^k \alpha_j n^j$, where $G_0 = G_1 = 1$, and we express $G_n$ in terms of the Fibonacci numbers $F_n$ and $F_{n-1}$, and in the parameters $\alpha_1,\ldots,\alpha_k$.

    KW - HMI-SLT: Speech and Language Technology

    KW - MSC-11B39

    KW - EWI-3664

    KW - IR-65998

    M3 - Article

    VL - 25

    SP - 81

    EP - 83

    JO - The Fibonacci Quarterly

    JF - The Fibonacci Quarterly

    SN - 0015-0517

    IS - 1

    ER -