A hierarchically adaptable spatial regression model to link aggregated health data and environmental data

Phuong Truong Ngoc Phuong (Corresponding Author), A. Stein

Research output: Contribution to journalArticleAcademicpeer-review

8 Citations (Scopus)
57 Downloads (Pure)

Abstract

Health data and environmental data are commonly collected at different levels of aggregation. A persistent challenge of using a spatial regression model to link these data is that their associations can vary as a function of aggregation. This results into ecological fallacy if association at one aggregation level is used for inferencing at another level. We address this challenge by presenting a hierarchically adaptable spatial regression model. In essence, the model extends the spatially varying coefficient model to allow the response to be count data at larger aggregation levels than that of the covariates. A Bayesian hierarchical approach is used for inferencing the model parameters. Robust inference and optimal prediction over geographical space and at different spatial aggregation levels are studied by simulated data sets. The spatial associations at different spatial supports are largely different, but can be efficiently inferred when prior knowledge of the associations is available. The model is applied to study hand, foot and mouth disease (HFMD) in Da Nang city, Viet Nam. Decrease in vegetated areas corresponds with elevated HFMD risks. A study to the identifiability of the parameters shows a strong need for a highly informative prior distribution. We conclude that the model is robust to the underlying aggregation levels of the calibrating data for association inference and it is ready for application in health geography.
Original languageEnglish
Pages (from-to)36-51
Number of pages16
JournalSpatial statistics
Volume23
Early online date2017
DOIs
Publication statusPublished - Mar 2018

Keywords

  • Aggregated health data
  • HFMD
  • Spatially varying coefficient
  • CoS
  • Ecological fallacy
  • Health geography
  • ITC-ISI-JOURNAL-ARTICLE
  • 2023 OA procedure

Fingerprint

Dive into the research topics of 'A hierarchically adaptable spatial regression model to link aggregated health data and environmental data'. Together they form a unique fingerprint.

Cite this