TY - JOUR
T1 - A large-stroke 3DOF stage with integrated feedback in MEMS
AU - Krijnen, Bram
AU - Swinkels, Koen R.
AU - Brouwer, Dannis M.
AU - Abelmann, Leon
AU - Herder, Just L.
PY - 2015/12
Y1 - 2015/12
N2 - In this paper, we design, fabricate, and validate a large-stroke 3-degree-of-freedom (DOF) positioning stage with integrated displacement sensors for feedback control in a single-mask microelectromechanical systems (MEMS) fabrication process. Three equal shuttles exactly define the position of the stage in x, y, and Rz. The kinematic relation between the shuttle positions and the stage position is given by the geometric transfer function. By increasing the order of this geometric transfer function, the stage error can be reduced. Each shuttle consists of a flexure mechanism, a position sensor, and electrostatic comb drive actuators for actuation along a straight line. The range of motion of the stage is limited by electrostatic pull-in of these comb drives. Three parameters of the stage, the leafspring length, the eccentricity, and the tangential arm, have been varied to find their influence on the stage range of motion. These simulation results can be used to design stages with different specifications. Position control of the individual shuttles is applied to control the position of the stage. The stroke of the 3DOF stage is verified up to 161 μm in x, 175 μm in y, and 325 mrad in Rz. This exceeds the range of motion of existing stages.
AB - In this paper, we design, fabricate, and validate a large-stroke 3-degree-of-freedom (DOF) positioning stage with integrated displacement sensors for feedback control in a single-mask microelectromechanical systems (MEMS) fabrication process. Three equal shuttles exactly define the position of the stage in x, y, and Rz. The kinematic relation between the shuttle positions and the stage position is given by the geometric transfer function. By increasing the order of this geometric transfer function, the stage error can be reduced. Each shuttle consists of a flexure mechanism, a position sensor, and electrostatic comb drive actuators for actuation along a straight line. The range of motion of the stage is limited by electrostatic pull-in of these comb drives. Three parameters of the stage, the leafspring length, the eccentricity, and the tangential arm, have been varied to find their influence on the stage range of motion. These simulation results can be used to design stages with different specifications. Position control of the individual shuttles is applied to control the position of the stage. The stroke of the 3DOF stage is verified up to 161 μm in x, 175 μm in y, and 325 mrad in Rz. This exceeds the range of motion of existing stages.
KW - 2023 OA procedure
U2 - 10.1109/JMEMS.2015.2432054
DO - 10.1109/JMEMS.2015.2432054
M3 - Article
SN - 1057-7157
VL - 24
SP - 1720
EP - 1729
JO - Journal of microelectromechanical systems
JF - Journal of microelectromechanical systems
IS - 6
ER -