TY - JOUR
T1 - A low-loss and broadband MMI-based multi/demultiplexer in Si3N4/SiO2 technology
AU - Mu, Jinfeng
AU - Vázquez-Córdova, Sergio A.
AU - Sefünç, Mustafa
AU - Yong, Yean-Sheng
AU - García-Blanco, Sonia M.
PY - 2016
Y1 - 2016
N2 - A low-loss and broadband multimode interference (MMI)-based wavelength multi/demultiplexer in Si3N4/SiO2 technology for erbium-doped lasing and amplifying applications is presented. The structural parameters of a 2 × 1 Si3N4 MMI multi/demultiplexer are optimized to minimize losses. The design and analysis of the MMI multi/demultiplexer are carried out using a hybrid approach, which combines a modified effective index method, the 2D film mode matching method, and the 2D beam propagation method, with lower impact in the computing requirements and simulation time than 3D methods. Simulated total losses of 0.19 and 0.23 dB at 980 and 1550 nm, respectively were obtained for the optimized MMI multi/demultiplexer. The measurements of our fabricated couplers, with 110 nm thick Si3N4 layer, show good agreement with our design. As multiplexers, the average losses of the MMI were measured to be 0.4 ± 0.3 dB for both 976 and 1550 nm wavelengths, and less than 1 dB across the whole C-band. As demultiplexers, the measured average extinction ratio of the fabricated MMI was found to be 21.4 ± 1.2 and 26.3 ± 0.8 dB for pump and signal wavelengths, respectively.
AB - A low-loss and broadband multimode interference (MMI)-based wavelength multi/demultiplexer in Si3N4/SiO2 technology for erbium-doped lasing and amplifying applications is presented. The structural parameters of a 2 × 1 Si3N4 MMI multi/demultiplexer are optimized to minimize losses. The design and analysis of the MMI multi/demultiplexer are carried out using a hybrid approach, which combines a modified effective index method, the 2D film mode matching method, and the 2D beam propagation method, with lower impact in the computing requirements and simulation time than 3D methods. Simulated total losses of 0.19 and 0.23 dB at 980 and 1550 nm, respectively were obtained for the optimized MMI multi/demultiplexer. The measurements of our fabricated couplers, with 110 nm thick Si3N4 layer, show good agreement with our design. As multiplexers, the average losses of the MMI were measured to be 0.4 ± 0.3 dB for both 976 and 1550 nm wavelengths, and less than 1 dB across the whole C-band. As demultiplexers, the measured average extinction ratio of the fabricated MMI was found to be 21.4 ± 1.2 and 26.3 ± 0.8 dB for pump and signal wavelengths, respectively.
KW - 2023 OA procedure
U2 - 10.1109/JLT.2016.2578463
DO - 10.1109/JLT.2016.2578463
M3 - Article
SN - 0733-8724
VL - 34
SP - 3603
EP - 3609
JO - Journal of lightwave technology
JF - Journal of lightwave technology
IS - 15
ER -