A mass conserving mixed stress formulation for stokes flow with weakly imposed stress symmetry

Jay Gopalakrishnan, Philip L. Lederer, Joachim Schoberl

Research output: Contribution to journalArticleAcademicpeer-review

11 Citations (Scopus)

Abstract

We introduce a new discretization of a mixed formulation of the incompressible Stokes equations that includes symmetric viscous stresses. The method is built upon a mass conserving mixed formulation that we recently studied. The improvement in this work is a new method that directly approximates the viscous fluid stress \sigma , enforcing its symmetry weakly. The finite element space in which the stress is approximated consists of matrix-valued functions having continuous "normal-tangential" components across element interfaces. Stability is achieved by adding certain matrix bubbles that were introduced earlier in the literature on finite elements for linear elasticity. Like the earlier work, the new method here approximates the fluid velocity u using H(div)conforming finite elements, thus providing exact mass conservation. Our error analysis shows optimal convergence rates for the pressure and the stress variables. An additional postprocessing yields an optimally convergent velocity satisfying exact mass conservation. The method is also pressure robust.

Original languageEnglish
Pages (from-to)706-732
Number of pages27
JournalSIAM journal on numerical analysis
Volume58
Issue number1
DOIs
Publication statusPublished - 2020
Externally publishedYes

Keywords

  • Incompressible flows
  • Mixed finite elements
  • Stokes equations
  • Weak symmetry
  • n/a OA procedure

Fingerprint

Dive into the research topics of 'A mass conserving mixed stress formulation for stokes flow with weakly imposed stress symmetry'. Together they form a unique fingerprint.

Cite this