Abstract
We propose stress formulation of the Stokes equations. The velocity $u$ is approximated with $H(\operatorname{div})$-conforming finite elements providing exact mass conservation. While many standard methods use $H^1$-conforming spaces for the discrete velocity $H(\operatorname{div})$-conformity fits the considered variational formulation in this work. A new stress-like variable $\sigma $ equalling the gradient of the velocity is set within a new function space $H(\operatorname{curl} \operatorname{div})$. New matrix-valued finite elements having continuous ‘normal-tangential’ components are constructed to approximate functions in $H(\operatorname{curl} \operatorname{div})$. An error analysis concludes with optimal rates of convergence for errors in $u$ (measured in a discrete $H^1$-norm), errors in $\sigma $ (measured in $L^2$) and the pressure $p$ (also measured in $L^2$). The exact mass conservation property is directly related to another structure-preservation property called pressure robustness, as shown by pressure-independent velocity error estimates. The computational cost measured in terms of interface degrees of freedom is comparable to old and new Stokes discretizations.
Original language | English |
---|---|
Pages (from-to) | 1838-1874 |
Number of pages | 37 |
Journal | IMA Journal of Numerical Analysis |
Volume | 40 |
Issue number | 3 |
DOIs | |
Publication status | Published - 17 Jul 2020 |
Externally published | Yes |
Keywords
- Incompressible flows
- Mixed finite element methods
- Stokes equations
- n/a OA procedure