A Membrane Lung Design Based on Circular Blood Flow Paths

Uditha Piyumindri Fernando, Alex J. Thompson, Joseph Potkay, Hannah Cheriyan, John Toomasian, Andreas Kaesler, Peter Schlanstein, Jutta Arens, Ronald B. Hirschl, Joseph L. Bull, Robert H. Bartlett*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

13 Citations (Scopus)

Abstract

Current hollow fiber membrane lungs feature a predominantly straight blood path length across the fiber bundle, resulting in limited O2 transfer efficiency because of the diffusion boundary layer effect. Using computational fluid dynamics and optical flow visualization methods, a hollow fiber membrane lung was designed comprising unique concentric circular blood flow paths connected by gates. The prototype lung, comprising a fiber surface area of 0.28 m2 , has a rated flow of 2 L/min, and the oxygenation efficiency is 357 ml/min/m2 . The CO2 clearance of the lung is 200 ml/min at the rated blood flow. Given its high gas transfer efficiency, as well as its compact size, low priming volume, and propensity for minimal thrombogenicity, this lung design has the potential to be used in a range of acute and chronic respiratory support applications, including providing total respiratory support for infants and small children and CO2 clearance in adults.

Original languageEnglish
Pages (from-to)637-643
Number of pages7
JournalASAIO Journal
Volume63
Issue number5
DOIs
Publication statusPublished - 1 Jan 2017
Externally publishedYes

Keywords

  • Artificial lung
  • Circular flow
  • Mixing
  • Oxygenation

Fingerprint

Dive into the research topics of 'A Membrane Lung Design Based on Circular Blood Flow Paths'. Together they form a unique fingerprint.

Cite this