A model for pressurized hydrogen induced thin film blisters

R.A.J.M. van den Bos, V. Reshetniak, Christopher James Lee, Jozef Petrus Henricus Benschop, Frederik Bijkerk

Research output: Contribution to journalArticleAcademicpeer-review

14 Citations (Scopus)
231 Downloads (Pure)


We introduce a model for hydrogen induced blister formation in nanometer thick thin films. The model assumes that molecular hydrogen gets trapped under a circular blister cap causing it to deflect elastically outward until a stable blister is formed. In the first part, the energy balance required for a stable blister is calculated. From this model, the adhesion energy of the blister cap, the internal pressure, and the critical H-dose for blister formation can be calculated. In the second part, the flux balance required for a blister to grow to a stable size is calculated. The model is applied to blisters formed in a Mo/Si multilayer after being exposed to hydrogen ions. From the model, the adhesion energy of the Mo/Si blister cap was calculated to be around 1.05 J/m2 with internal pressures in the range of 175–280 MPa. Based on the model, a minimum ion dose for the onset of blister formation was calculated to be d = 4.2 × 1018 ions/cm2. From the flux balance equations, the diffusion constant for the Mo/Si blister cap was estimated to be D H 2 =(10±1)×10 −18  cm 2 /s DH2=(10±1)×10−18 cm2/s .
Original languageEnglish
Article number235304
Pages (from-to)235304-
Number of pages8
JournalJournal of Applied Physics
Issue number23
Publication statusPublished - 2016


  • IR-102805
  • METIS-320162


Dive into the research topics of 'A model for pressurized hydrogen induced thin film blisters'. Together they form a unique fingerprint.

Cite this