A Monolithic Compliant Continuum Manipulator: a Proof-of-Concept Study

Theodosia Lourdes Thomas (Corresponding Author), V. Kalpathy Venkiteswaran, G.K. Ananthasuresh, S. Misra

Research output: Contribution to journalArticleAcademicpeer-review

11 Citations (Scopus)
268 Downloads (Pure)


Continuum robots have the potential to form an effective interface between the patient and surgeon in minimally invasive procedures. Magnetic actuation has the potential for accurate catheter steering, reducing tissue trauma and decreasing radiation exposure. In this paper, a new design of a monolithic metallic compliant continuum manipulator is presented, with flexures for precise motion. Contactless actuation is achieved using time-varying magnetic fields generated by an array of electromagnetic coils. The motion of the manipulator under magnetic actuation for planar deflection is studied. The mean errors of the theoretical model compared to experiments over three designs are found to be 1.9 mm and 5.1degrees in estimating the in-plane position and orientation of the tip of the manipulator, respectively and 1.2 mm for the whole shape of the manipulator. Maneuverability of the manipulator is demonstrated by steering it along a path of known curvature and also through a gelatin phantom which is visualized in real time using ultrasound imaging, substantiating its application as a steerable surgical manipulator.
Original languageEnglish
Article number061006
Number of pages11
JournalJournal of mechanisms and robotics
Issue number6
Early online date8 Apr 2020
Publication statusPublished - 1 Dec 2020


  • Compliant mechanisms
  • Mechanism Design
  • Medical robotics
  • Robot design


Dive into the research topics of 'A Monolithic Compliant Continuum Manipulator: a Proof-of-Concept Study'. Together they form a unique fingerprint.

Cite this