A natural differential calculus on Lie bialgebras with dual of triangular type

N. van den Hijligenberg, N.W. van den Hijligenberg, Ruud Martini

    Research output: Book/ReportReportProfessional

    15 Downloads (Pure)

    Abstract

    We prove that for a specific class of Lie bialgebras, there exists a natural differential calculus. This class consists of the Lie bialgebras for which the dual Lie bialgebra is of triangular type. The differential calculus is explicitly constructed with the help of the $R$-matrix from the dual. The method is illustrated by several examples.
    Original languageEnglish
    Place of PublicationAmsterdam
    PublisherStichting Mathematisch Centrum
    Number of pages7
    Publication statusPublished - 1995

    Publication series

    NameReport / Department of Algebra, Analysis and Geometry
    PublisherStichting Mathematisch Centrum
    No.Report AM-R9519

      Fingerprint

    Keywords

    • METIS-141350
    • IR-102316

    Cite this

    van den Hijligenberg, N., van den Hijligenberg, N. W., & Martini, R. (1995). A natural differential calculus on Lie bialgebras with dual of triangular type. (Report / Department of Algebra, Analysis and Geometry; No. Report AM-R9519). Amsterdam: Stichting Mathematisch Centrum.