Abstract
A silicon-based microreactor with a structure that allows in situ characterization by Attenuated Total Internal Reflection Infrared spectroscopy (ATR-IR) of processes driven by an external electric field (E-field) is presented. The microreactor is characterized electrically and spectroscopically. The effects of applying an electric field over a gas or liquid medium in the flow channel of the microreactor are carefully investigated and electrical, mechanical, and optical phenomena which may affect the interpretation of ATR-IR spectroscopic data are discussed. Among these phenomena are heating as a result of the E-field-driven current and the associated phonon generation in the silicon crystal. Experimental IR results under the application of an electrical field are shown for CO2 gas and ammonium ions in aqueous solution. The ability to follow liquid-phase reactions in situ is demonstrated
Original language | English |
---|---|
Pages (from-to) | 13-21 |
Journal | Sensors and Actuators B: Chemical |
Volume | 220 |
DOIs | |
Publication status | Published - 2015 |
Keywords
- 22/2 OA procedure