A new dense 18-year time series of surface water fraction estimates from MODIS for the Mediterranean region

Research output: Contribution to journalArticleAcademicpeer-review

9 Downloads (Pure)

Abstract

Detailed knowledge on surface water distribution and its changes is of high importance for water management and biodiversity conservation. Landsat-based assessments of surface water, such as the Global Surface Water (GSW) dataset developed by the European Commission Joint Research Centre (JRC), may not capture important changes in surface water during months with considerable cloud cover. This results in large temporal gaps in the Landsat record that prevent the accurate assessment of surface water dynamics. Here we show that the frequent global acquisitions by the Moderate Resolution Imaging Spectrometer (MODIS) sensors can compensate for this shortcoming, and in addition allow for the examination of surface water changes at fine temporal resolution. To account for water bodies smaller than a MODIS cell, we developed a global rule-based regression model for estimating the surface water fraction from a 500 m nadir reflectance product from MODIS (MCD43A4). The model was trained and evaluated with the GSW monthly water history dataset. A high estimation accuracy (R2=0.91, RMSE =11.41 %, and MAE =6.39 %) was achieved. We then applied the algorithm to 18 years of MODIS data (2000–2017) to generate a time series of surface water fraction maps at an 8 d interval for the Mediterranean. From these maps we derived metrics including the mean annual maximum, the standard deviation, and the seasonality of surface water. The dynamic surface water extent estimates from MODIS were compared with the results from GSW and water level data measured in situ or by satellite altimetry, yielding similar temporal patterns. Our dataset complements surface water products at a fine spatial resolution by adding more temporal detail, which permits the effective monitoring and assessment of the seasonal, inter-annual, and long-term variability of water resources, inclusive of small water bodies.
Original languageEnglish
Pages (from-to)3037-3056
Number of pages20
JournalHydrology and earth system sciences (HESS) : open access
Volume23
Issue number7
DOIs
Publication statusPublished - 17 Jul 2019

Fingerprint

MODIS
time series
surface water
Landsat
satellite altimetry
nadir
European Commission
cloud cover
seasonality
water management
reflectance
spatial resolution
water level
water resource
biodiversity
sensor

Keywords

  • ITC-ISI-JOURNAL-ARTICLE
  • ITC-GOLD

Cite this

@article{6bc8f42818eb45d19fb4ca5a85648629,
title = "A new dense 18-year time series of surface water fraction estimates from MODIS for the Mediterranean region",
abstract = "Detailed knowledge on surface water distribution and its changes is of high importance for water management and biodiversity conservation. Landsat-based assessments of surface water, such as the Global Surface Water (GSW) dataset developed by the European Commission Joint Research Centre (JRC), may not capture important changes in surface water during months with considerable cloud cover. This results in large temporal gaps in the Landsat record that prevent the accurate assessment of surface water dynamics. Here we show that the frequent global acquisitions by the Moderate Resolution Imaging Spectrometer (MODIS) sensors can compensate for this shortcoming, and in addition allow for the examination of surface water changes at fine temporal resolution. To account for water bodies smaller than a MODIS cell, we developed a global rule-based regression model for estimating the surface water fraction from a 500 m nadir reflectance product from MODIS (MCD43A4). The model was trained and evaluated with the GSW monthly water history dataset. A high estimation accuracy (R2=0.91, RMSE =11.41 {\%}, and MAE =6.39 {\%}) was achieved. We then applied the algorithm to 18 years of MODIS data (2000–2017) to generate a time series of surface water fraction maps at an 8 d interval for the Mediterranean. From these maps we derived metrics including the mean annual maximum, the standard deviation, and the seasonality of surface water. The dynamic surface water extent estimates from MODIS were compared with the results from GSW and water level data measured in situ or by satellite altimetry, yielding similar temporal patterns. Our dataset complements surface water products at a fine spatial resolution by adding more temporal detail, which permits the effective monitoring and assessment of the seasonal, inter-annual, and long-term variability of water resources, inclusive of small water bodies.",
keywords = "ITC-ISI-JOURNAL-ARTICLE, ITC-GOLD",
author = "Linlin Li and A.K. Skidmore and A. Vrieling and Tiejun Wang",
year = "2019",
month = "7",
day = "17",
doi = "10.5194/hess-23-3037-2019",
language = "English",
volume = "23",
pages = "3037--3056",
journal = "Hydrology and earth system sciences",
issn = "1027-5606",
publisher = "Copernicus",
number = "7",

}

TY - JOUR

T1 - A new dense 18-year time series of surface water fraction estimates from MODIS for the Mediterranean region

AU - Li, Linlin

AU - Skidmore, A.K.

AU - Vrieling, A.

AU - Wang, Tiejun

PY - 2019/7/17

Y1 - 2019/7/17

N2 - Detailed knowledge on surface water distribution and its changes is of high importance for water management and biodiversity conservation. Landsat-based assessments of surface water, such as the Global Surface Water (GSW) dataset developed by the European Commission Joint Research Centre (JRC), may not capture important changes in surface water during months with considerable cloud cover. This results in large temporal gaps in the Landsat record that prevent the accurate assessment of surface water dynamics. Here we show that the frequent global acquisitions by the Moderate Resolution Imaging Spectrometer (MODIS) sensors can compensate for this shortcoming, and in addition allow for the examination of surface water changes at fine temporal resolution. To account for water bodies smaller than a MODIS cell, we developed a global rule-based regression model for estimating the surface water fraction from a 500 m nadir reflectance product from MODIS (MCD43A4). The model was trained and evaluated with the GSW monthly water history dataset. A high estimation accuracy (R2=0.91, RMSE =11.41 %, and MAE =6.39 %) was achieved. We then applied the algorithm to 18 years of MODIS data (2000–2017) to generate a time series of surface water fraction maps at an 8 d interval for the Mediterranean. From these maps we derived metrics including the mean annual maximum, the standard deviation, and the seasonality of surface water. The dynamic surface water extent estimates from MODIS were compared with the results from GSW and water level data measured in situ or by satellite altimetry, yielding similar temporal patterns. Our dataset complements surface water products at a fine spatial resolution by adding more temporal detail, which permits the effective monitoring and assessment of the seasonal, inter-annual, and long-term variability of water resources, inclusive of small water bodies.

AB - Detailed knowledge on surface water distribution and its changes is of high importance for water management and biodiversity conservation. Landsat-based assessments of surface water, such as the Global Surface Water (GSW) dataset developed by the European Commission Joint Research Centre (JRC), may not capture important changes in surface water during months with considerable cloud cover. This results in large temporal gaps in the Landsat record that prevent the accurate assessment of surface water dynamics. Here we show that the frequent global acquisitions by the Moderate Resolution Imaging Spectrometer (MODIS) sensors can compensate for this shortcoming, and in addition allow for the examination of surface water changes at fine temporal resolution. To account for water bodies smaller than a MODIS cell, we developed a global rule-based regression model for estimating the surface water fraction from a 500 m nadir reflectance product from MODIS (MCD43A4). The model was trained and evaluated with the GSW monthly water history dataset. A high estimation accuracy (R2=0.91, RMSE =11.41 %, and MAE =6.39 %) was achieved. We then applied the algorithm to 18 years of MODIS data (2000–2017) to generate a time series of surface water fraction maps at an 8 d interval for the Mediterranean. From these maps we derived metrics including the mean annual maximum, the standard deviation, and the seasonality of surface water. The dynamic surface water extent estimates from MODIS were compared with the results from GSW and water level data measured in situ or by satellite altimetry, yielding similar temporal patterns. Our dataset complements surface water products at a fine spatial resolution by adding more temporal detail, which permits the effective monitoring and assessment of the seasonal, inter-annual, and long-term variability of water resources, inclusive of small water bodies.

KW - ITC-ISI-JOURNAL-ARTICLE

KW - ITC-GOLD

UR - https://ezproxy2.utwente.nl/login?url=https://library.itc.utwente.nl/login/2019/isi/li_new.pdf

UR - http://www.scopus.com/inward/record.url?scp=85069467359&partnerID=8YFLogxK

U2 - 10.5194/hess-23-3037-2019

DO - 10.5194/hess-23-3037-2019

M3 - Article

VL - 23

SP - 3037

EP - 3056

JO - Hydrology and earth system sciences

JF - Hydrology and earth system sciences

SN - 1027-5606

IS - 7

ER -