TY - JOUR
T1 - A new technique for extracting the red edge position from hyperspectral data
T2 - The linear extrapolation method
AU - Cho, M.A.
AU - Skidmore, A.K.
PY - 2006
Y1 - 2006
N2 - The position of the inflexion point in the red edge region (680 to 780 nm) of the spectral reflectance signature, termed the red edge position (REP), is affected by biochemical and biophysical parameters and has been used as a means to estimate foliar chlorophyll or nitrogen content. In this paper, we report on a new technique for extracting the REP from hyperspectral data that aims to mitigate the discontinuity in the relationship between the REP and the nitrogen content caused by the existence of a double-peak feature on the derivative spectrum. It is based on a linear extrapolation of straight lines on the far-red (680 to 700 nm) and NIR (725 to 760 nm) flanks of the first derivative reflectance spectrum. The REP is then defined by the wavelength value at the intersection of the two lines. The output is a REP equation, REP = − (c1 − c2) / (m1 − m2), where c1 and c2, and m1 and m2 represent the intercepts and slopes of the far-red and NIR lines, respectively. Far-red wavebands at 679.65 and 694.30 nm in combination with NIR wavebands at 732.46 and 760.41 nm or at 723.64 and 760.41 nm were identified as the optimal combinations for calculating nitrogen-sensitive REPs for three spectral data sets (rye canopy, and maize leaf and mixed grass/herb leaf stack spectra). REPs extracted using this new technique (linear extrapolation method) showed high correlations with a wide range of foliar nitrogen concentrations for both narrow and wider bandwidth spectra, being comparable with results obtained using the traditional linear interpolation, polynomial and inverted Gaussian fitting techniques. In addition, the new technique is simple as is the case with the linear interpolation method, but performed better than the latter method in the case of maize leaves at different developmental stages and mixed grass/herb leaves with a low nitrogen concentration.
AB - The position of the inflexion point in the red edge region (680 to 780 nm) of the spectral reflectance signature, termed the red edge position (REP), is affected by biochemical and biophysical parameters and has been used as a means to estimate foliar chlorophyll or nitrogen content. In this paper, we report on a new technique for extracting the REP from hyperspectral data that aims to mitigate the discontinuity in the relationship between the REP and the nitrogen content caused by the existence of a double-peak feature on the derivative spectrum. It is based on a linear extrapolation of straight lines on the far-red (680 to 700 nm) and NIR (725 to 760 nm) flanks of the first derivative reflectance spectrum. The REP is then defined by the wavelength value at the intersection of the two lines. The output is a REP equation, REP = − (c1 − c2) / (m1 − m2), where c1 and c2, and m1 and m2 represent the intercepts and slopes of the far-red and NIR lines, respectively. Far-red wavebands at 679.65 and 694.30 nm in combination with NIR wavebands at 732.46 and 760.41 nm or at 723.64 and 760.41 nm were identified as the optimal combinations for calculating nitrogen-sensitive REPs for three spectral data sets (rye canopy, and maize leaf and mixed grass/herb leaf stack spectra). REPs extracted using this new technique (linear extrapolation method) showed high correlations with a wide range of foliar nitrogen concentrations for both narrow and wider bandwidth spectra, being comparable with results obtained using the traditional linear interpolation, polynomial and inverted Gaussian fitting techniques. In addition, the new technique is simple as is the case with the linear interpolation method, but performed better than the latter method in the case of maize leaves at different developmental stages and mixed grass/herb leaves with a low nitrogen concentration.
KW - NRS
KW - ADLIB-ART-2461
KW - 2024 OA procedure
U2 - 10.1016/j.rse.2005.12.011
DO - 10.1016/j.rse.2005.12.011
M3 - Article
SN - 0034-4257
VL - 101
SP - 181
EP - 193
JO - Remote sensing of environment
JF - Remote sensing of environment
IS - 2
ER -