### Abstract

Original language | Undefined |
---|---|

Pages (from-to) | 19-23 |

Number of pages | 5 |

Journal | Bulletin of the Australian Mathematical Society |

Volume | 92 |

Issue number | 1 |

DOIs | |

State | Published - Aug 2015 |

### Fingerprint

### Keywords

- MSC-05C
- EWI-27035
- IR-100672
- Ramsey number
- METIS-317206
- Fan

### Cite this

*Bulletin of the Australian Mathematical Society*,

*92*(1), 19-23. DOI: 10.1017/S0004972715000398

}

*Bulletin of the Australian Mathematical Society*, vol 92, no. 1, pp. 19-23. DOI: 10.1017/S0004972715000398

**A note on Ramsey numbers for fans.** / Zhang, Yanbo; Broersma, Haitze J.; Chen, Yaojun.

Research output: Scientific - peer-review › Article

TY - JOUR

T1 - A note on Ramsey numbers for fans

AU - Zhang,Yanbo

AU - Broersma,Haitze J.

AU - Chen,Yaojun

N1 - eemcs-eprint-27035

PY - 2015/8

Y1 - 2015/8

N2 - For two given graphs G1 and G2, the Ramsey number R(G1,G2) is the smallest integer N such that, for any graph G of order N, either G contains G1 as a subgraph or the complement of G contains G2 as a subgraph. A fan Fl is l triangles sharing exactly one vertex. In this note, it is shown that R(Fn, Fm) = 4n + 1 for n ≥ max{m 2 − m/2, 11m/2 − 4}.

AB - For two given graphs G1 and G2, the Ramsey number R(G1,G2) is the smallest integer N such that, for any graph G of order N, either G contains G1 as a subgraph or the complement of G contains G2 as a subgraph. A fan Fl is l triangles sharing exactly one vertex. In this note, it is shown that R(Fn, Fm) = 4n + 1 for n ≥ max{m 2 − m/2, 11m/2 − 4}.

KW - MSC-05C

KW - EWI-27035

KW - IR-100672

KW - Ramsey number

KW - METIS-317206

KW - Fan

U2 - 10.1017/S0004972715000398

DO - 10.1017/S0004972715000398

M3 - Article

VL - 92

SP - 19

EP - 23

JO - Bulletin of the Australian Mathematical Society

T2 - Bulletin of the Australian Mathematical Society

JF - Bulletin of the Australian Mathematical Society

SN - 0004-9727

IS - 1

ER -