TY - JOUR
T1 - A Novel Approach for the Detection of Standing Tree Stems from Plot-Level terrestrial Laser Scanning Data
AU - Zhang, Wuming
AU - Wan, Peng
AU - Wang, Tiejun
AU - Cai, Shangshu
AU - Chen, Yiming
AU - Jin, Xiuliang
AU - Yan, Guangjian
PY - 2019/1/22
Y1 - 2019/1/22
N2 - Tree stem detection is a key step toward retrieving detailed stem attributes from terrestrial laser scanning (TLS) data. Various point-based methods have been proposed for the stem point extraction at both individual tree and plot levels. The main limitation of the point-based methods is their high computing demand when dealing with plot-level TLS data. Although segment-based methods can reduce the computational burden and uncertainties of point cloud classification, its application is largely limited to urban scenes due to the complexity of the algorithm, as well as the conditions of natural forests. Here we propose a novel and simple segment-based method for efficient stem detection at the plot level, which is based on the curvature feature of the points and connected component segmentation. We tested our method using a public TLS dataset with six forest plots that were collected for the international TLS benchmarking project in Evo, Finland. Results showed that the mean accuracies of the stem point extraction were comparable to the state-of-art methods (>95%). The accuracies of the stem mappings were also comparable to the methods tested in the international TLS benchmarking project. Additionally, our method was applicable to a wide range of stem forms. In short, the proposed method is accurate and simple; it is a sensible solution for the stem detection of standing trees using TLS data.
AB - Tree stem detection is a key step toward retrieving detailed stem attributes from terrestrial laser scanning (TLS) data. Various point-based methods have been proposed for the stem point extraction at both individual tree and plot levels. The main limitation of the point-based methods is their high computing demand when dealing with plot-level TLS data. Although segment-based methods can reduce the computational burden and uncertainties of point cloud classification, its application is largely limited to urban scenes due to the complexity of the algorithm, as well as the conditions of natural forests. Here we propose a novel and simple segment-based method for efficient stem detection at the plot level, which is based on the curvature feature of the points and connected component segmentation. We tested our method using a public TLS dataset with six forest plots that were collected for the international TLS benchmarking project in Evo, Finland. Results showed that the mean accuracies of the stem point extraction were comparable to the state-of-art methods (>95%). The accuracies of the stem mappings were also comparable to the methods tested in the international TLS benchmarking project. Additionally, our method was applicable to a wide range of stem forms. In short, the proposed method is accurate and simple; it is a sensible solution for the stem detection of standing trees using TLS data.
KW - ITC-ISI-JOURNAL-ARTICLE
KW - ITC-GOLD
KW - Segment-based classification
KW - Tree stem extraction
KW - Connected component segmentation
KW - Terrestrial laser scanning
UR - https://ezproxy2.utwente.nl/login?url=https://webapps.itc.utwente.nl/library/2019/isi/wang_nov.pdf
UR - http://www.scopus.com/inward/record.url?scp=85060687621&partnerID=8YFLogxK
U2 - 10.3390/rs11020211
DO - 10.3390/rs11020211
M3 - Article
SN - 2072-4292
VL - 11
SP - 1
EP - 19
JO - Remote sensing
JF - Remote sensing
IS - 2
M1 - 211
ER -