A novel characterization technique for superparamagnetic iron oxide nanoparticles: The superparamagnetic quantifier, compared with magnetic particle spectroscopy

M. M. Van De Loosdrecht* (Corresponding Author), S. Draack, S. Waanders, J. G.L. Schlief, H. J.G. Krooshoop, T. Viereck, Frank Ludwig, B. Ten Haken

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

6 Citations (Scopus)
158 Downloads (Pure)

Abstract

Superparamagnetic iron oxide nanoparticles (SPIONs) are used as a tracer material in sentinel node biopsies. The latter is a procedure to analyze if cancer cells have spread to lymph nodes, helping to personalize patient care. To predict SPION behavior in vivo, it is important to analyze their magnetic properties in biological environments. The superparamagnetic quantifier (SPaQ) is a new device to measure the dynamic magnetization curve of SPIONs. The magnetization curve was measured for two types of SPIONs: Resovist and SHP-25. We used three techniques: Vibrating Sample Magnetometry (VSM), Magnetic Particle Spectroscopy (MPS), and our new SPaQ. Furthermore, AC susceptibility (ACS) measurements were performed as part of the evaluation of the three techniques. SPaQ and VSM results were found to be similar. Measurement results were nearly identical in both directions, indicating minor hysteresis. However, in MPS measurements, a clear hysteresis loop was observed. Furthermore, the ACS measurements showed a pronounced Brownian maximum, indicating an optimal response for an AC frequency below 10 kHz for both particle systems. Both the SPaQ and MPS were found to be superior to VSM since measurements are faster, can be performed at room temperature, and are particularly sensitive to particle dynamics. The main difference between the SPaQ and MPS lies in the excitation sequence. The SPaQ combines an alternating magnetic field that has a low amplitude with a gradual DC offset, whereas MPS uses only an alternating field that has a large amplitude. In conclusion, both the SPaQ and MPS are highly suited to improve understanding SPION behavior, which will lead to the radical improvement of sentinel node biopsy accuracy.

Original languageEnglish
Article number024101
JournalReview of scientific instruments
Volume90
Issue number2
DOIs
Publication statusPublished - 1 Feb 2019

Fingerprint Dive into the research topics of 'A novel characterization technique for superparamagnetic iron oxide nanoparticles: The superparamagnetic quantifier, compared with magnetic particle spectroscopy'. Together they form a unique fingerprint.

  • Cite this