A Numerical Investigation of the Friction Contact of an Unfilled Styrene Butadiene Rubber by a Blade Sliding Indentation

B. Setiyana* (Corresponding Author), M. Khafidh, R. Ismail, J. Jamari, D. J. Schipper

*Corresponding author for this work

Research output: Contribution to journalConference articleAcademicpeer-review

26 Downloads (Pure)


Rubber is mostly modeled as a hyperelastic material and as a consequence, large deformation occur along friction contact against a rigid counterface. In general, Coefficient of friction (COF) of a contact surface consists of two components, i.e. adhesion and deformation (hysteresis). However, it is difficult to investigate the deformation component of COF analitically on the rubber sliding. By means of a rigid blade sliding indentation technique, this paper studies the friction contact phenomena on Unfilled Styrene Butadiene Rubber (SBR-0) numerically by using a Finite Element Analysis (FEA) in plane strain mode. By a given sliding speed, the FEA simulation is carried out with the various adhesion COF and sliding depth. The presented simulation output are stress, deformation and reaction forces. Results show that the deformation COF strongly depends on the sliding displacement. Finally, the overall COF highly increases and then decreases with respect to the sliding displacement and tends to indicate stick-slip phenomena.

Original languageEnglish
Article number012078
JournalJournal of physics: Conference series
Issue number1
Publication statusPublished - 28 Sep 2018
EventInternational Conference on Computation in Science and Engineering, ICCSE 2017 - Bandung, Indonesia
Duration: 10 Jul 201712 Jul 2017


Cite this