TY - BOOK

T1 - A polynomial algorithm for $P | p_j = 1, r_j, outtree | \Sigma C_j$ and $P | p_j = 1,r_j, outtree, pmtn | \Sigma C_j$

AU - Brucker, Peter

AU - Hurink, Johann L.

AU - Knust, Sigrid

N1 - Imported from MEMORANDA

PY - 2001

Y1 - 2001

N2 - A polynomial algorithm is proposed for two scheduling problems for which the complexity status was open. A set of jobs with unit processing times, release dates and outtree precedence relations has to be processed on parallel identical machines such that the total completion time $\sum C_j$ is minimized. It is shown that the problem can be solved in $O(n^2)$ time if no preemption is allowed. Furthermore, it is proved that allowing preemption does not reduce the optimal objective value, which verifies a conjecture of Baptiste and Timkovsky.

AB - A polynomial algorithm is proposed for two scheduling problems for which the complexity status was open. A set of jobs with unit processing times, release dates and outtree precedence relations has to be processed on parallel identical machines such that the total completion time $\sum C_j$ is minimized. It is shown that the problem can be solved in $O(n^2)$ time if no preemption is allowed. Furthermore, it is proved that allowing preemption does not reduce the optimal objective value, which verifies a conjecture of Baptiste and Timkovsky.

M3 - Report

T3 - Memorandum / Department of Applied Mathematics

BT - A polynomial algorithm for $P | p_j = 1, r_j, outtree | \Sigma C_j$ and $P | p_j = 1,r_j, outtree, pmtn | \Sigma C_j$

PB - University of Twente

CY - Enschede

ER -