A scaling analysis of a cat and mouse Markov chain

Nelli Litvak, Philippe Robert

Research output: Book/ReportReportProfessional

196 Downloads (Pure)


Motivated by an original on-line page-ranking algorithm, starting from an arbitrary Markov chain $(C_n)$ on a discrete state space ${\cal S}$, a Markov chain $(C_n,M_n)$ on the product space ${\cal S}^2$, the cat and mouse Markov chain, is constructed. The first coordinate of this Markov chain behaves like the original Markov chain and the second component changes only when both coordinates are equal. The asymptotic properties of this Markov chain are investigated. A representation of its invariant measure is in particular obtained. When the state space is infinite it is shown that this Markov chain is in fact null recurrent if the initial Markov chain $(C_n)$ is positive recurrent and reversible. In this context, the scaling properties of the location of the second component, the mouse, are investigated in various situations: simple random walks in $\mathbb{Z}$ and $\mathbb{Z}^2$, reflected simple random walk in $\mathbb{N}$ and also in a continuous time setting. For several of these processes, a time scaling with rapid growth gives an interesting asymptotic behavior related to limit results for occupation times and rare events of Markov processes.
Original languageUndefined
Place of PublicationEnschede
PublisherUniversity of Twente
Number of pages28
Publication statusPublished - Jun 2009

Publication series

NameMemorandum / Department of Applied Mathematics
PublisherUniversity of Twente, Department of Applied Mathematics
ISSN (Print)1874-4850
ISSN (Electronic)1874-4850


  • Scaling of null recurrent Markov chains
  • Cat and mouse Markov chains
  • IR-65499
  • METIS-263862
  • Pagerank algorithms
  • EWI-15388

Cite this