A self-adapting system for the automated detection of inter-ictal epileptiform discharges

Research output: Contribution to journalArticleAcademicpeer-review

26 Citations (Scopus)
86 Downloads (Pure)


Purpose Scalp EEG remains the standard clinical procedure for the diagnosis of epilepsy. Manual detection of inter-ictal epileptiform discharges (IEDs) is slow and cumbersome, and few automated methods are used to assist in practice. This is mostly due to low sensitivities, high false positive rates, or a lack of trust in the automated method. In this study we aim to find a solution that will make computer assisted detection more efficient than conventional methods, while preserving the detection certainty of a manual search. Methods Our solution consists of two phases. First, a detection phase finds all events similar to epileptiform activity by using a large database of template waveforms. Individual template detections are combined to form “IED nominations”, each with a corresponding certainty value based on the reliability of their contributing templates. The second phase uses the ten nominations with highest certainty and presents them to the reviewer one by one for confirmation. Confirmations are used to update certainty values of the remaining nominations, and another iteration is performed where ten nominations with the highest certainty are presented. This continues until the reviewer is satisfied with what has been seen. Reviewer feedback is also used to update template accuracies globally and improve future detections. Key Findings Using the described method and fifteen evaluation EEGs (241 IEDs), one third of all inter-ictal events were shown after one iteration, half after two iterations, and 74%, 90%, and 95% after 5, 10 and 15 iterations respectively. Reviewing fifteen iterations for the 20–30 min recordings 1took approximately 5 min. Significance The proposed method shows a practical approach for combining automated detection with visual searching for inter-ictal epileptiform activity. Further evaluation is needed to verify its clinical feasibility and measure the added value it presents.
Original languageEnglish
Article numbere85180
Pages (from-to)-
JournalPLoS ONE
Issue number1
Publication statusPublished - 2014


  • IR-94458
  • METIS-309385


Dive into the research topics of 'A self-adapting system for the automated detection of inter-ictal epileptiform discharges'. Together they form a unique fingerprint.

Cite this