TY - GEN
T1 - A Systematic Comparison Study of Different Bonding Technologies for Large Substrate Attachment of Power Electronics
AU - Wang, Lisheng
AU - Rietveld, Gert
AU - Hueting, Raymond J.E.
N1 - Publisher Copyright:
© VDE VERLAG GMBH · Berlin · Offenbach.
PY - 2024
Y1 - 2024
N2 - Solder joints, silver (Ag) sintering, and transient liquid phase (TLP) bonding are widely used bonding technologies for packaging power modules. Each technology has advantages and limitations regarding reliability, thermal conductance and cost. So far, these technologies have not been systematically compared, and in this work we aim to fill this gap. To this end, we have performed shear strength tests on different solder, sintered Ag and TLP joint samples as a function of aging via thermal cycling and high-temperature storage tests. The joint microstructure and failure modes were analyzed using a scanning electron microscope with energy-dispersive X-ray spectroscopy. The results of our study show that sintered Ag has the maximum shear strength both before and after aging of around 70 MPa, while solder joints have the lowest shear strength that decreases from 50 MPa to about 35 MPa after thermal cycling and aging. For TLP bonding, the shear strength remains essentially stable at about 50 MPa after aging due to intermetallic compound growth. TLP bonding thus has a higher reliability than solder joints and is a cost-effective bonding alternative to Ag sintering.
AB - Solder joints, silver (Ag) sintering, and transient liquid phase (TLP) bonding are widely used bonding technologies for packaging power modules. Each technology has advantages and limitations regarding reliability, thermal conductance and cost. So far, these technologies have not been systematically compared, and in this work we aim to fill this gap. To this end, we have performed shear strength tests on different solder, sintered Ag and TLP joint samples as a function of aging via thermal cycling and high-temperature storage tests. The joint microstructure and failure modes were analyzed using a scanning electron microscope with energy-dispersive X-ray spectroscopy. The results of our study show that sintered Ag has the maximum shear strength both before and after aging of around 70 MPa, while solder joints have the lowest shear strength that decreases from 50 MPa to about 35 MPa after thermal cycling and aging. For TLP bonding, the shear strength remains essentially stable at about 50 MPa after aging due to intermetallic compound growth. TLP bonding thus has a higher reliability than solder joints and is a cost-effective bonding alternative to Ag sintering.
UR - http://www.scopus.com/inward/record.url?scp=85202070005&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85202070005
T3 - PCIM Europe Conference Proceedings
SP - 2055
EP - 2061
BT - International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, PCIM Europe 2024
PB - VDE Verlag
CY - Berlin
T2 - 2024 International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, PCIM Europe 2024
Y2 - 11 June 2024 through 13 June 2024
ER -