ABCNet: Attentive bilateral contextual network for efficient semantic segmentation of Fine-Resolution remotely sensed imagery

Rui Li, Shunyi Zheng, Ce Zhang, Chenxi Duan*, Libo Wang, Peter M. Atkinson

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

177 Citations (Scopus)
246 Downloads (Pure)

Abstract

Semantic segmentation of remotely sensed imagery plays a critical role in many real-world applications, such as environmental change monitoring, precision agriculture, environmental protection, and economic assessment. Following rapid developments in sensor technologies, vast numbers of fine-resolution satellite and airborne remote sensing images are now available, for which semantic segmentation is potentially a valuable method. However, because of the rich complexity and heterogeneity of information provided with an ever-increasing spatial resolution, state-of-the-art deep learning algorithms commonly adopt complex network structures for segmentation, which often result in significant computational demand. Particularly, the frequently-used fully convolutional network (FCN) relies heavily on fine-grained spatial detail (fine spatial resolution) and contextual information (large receptive fields), both imposing high computational costs. This impedes the practical utility of FCN for real-world applications, especially those requiring real-time data processing. In this paper, we propose a novel Attentive Bilateral Contextual Network (ABCNet), a lightweight convolutional neural network (CNN) with a spatial path and a contextual path. Extensive experiments, including a comprehensive ablation study, demonstrate that ABCNet has strong discrimination capability with competitive accuracy compared with state-of-the-art benchmark methods while achieving significantly increased computational efficiency. Specifically, the proposed ABCNet achieves a 91.3% overall accuracy (OA) on the Potsdam test dataset and outperforms all lightweight benchmark methods significantly. The code is freely available at https://github.com/lironui/ABCNet.
Original languageEnglish
Pages (from-to)84-98
Number of pages15
JournalISPRS journal of photogrammetry and remote sensing
Volume181
Early online date16 Sept 2021
DOIs
Publication statusPublished - 1 Nov 2021

Keywords

  • ITC-ISI-JOURNAL-ARTICLE
  • ITC-HYBRID
  • UT-Hybrid-D

Fingerprint

Dive into the research topics of 'ABCNet: Attentive bilateral contextual network for efficient semantic segmentation of Fine-Resolution remotely sensed imagery'. Together they form a unique fingerprint.

Cite this