Accounting for material scatter in sheet metal forming simulations

J.H. Wiebenga, E.H. Atzema, R. Boterman, M. Abspoel, A.H. van den Boogaard

Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

122 Downloads (Pure)


Robust design of forming processes is gaining attention throughout the industry. To analyze the robustness of a sheet metal forming process using Finite Element (FE) simulations, an accurate input in terms of parameter variation is required. This paper presents a pragmatic, accurate and economic approach for measuring and modeling one of the main inputs, i.e. material properties and its associated scattering. For the purpose of this research, samples of 41 coils of a forming steel DX54D+Z (EN 10327:2004) from multiple batches have been collected. Fully determining the stochastic material behavior to the required accuracy for precise modeling in FE simulations would involve performing many mechanical experiments. Instead, the present work combines mechanical testing and texture analysis to limit the required effort. Moreover, use is made of the correlations between the material parameters to efficiently model the material property scatter for use in the numerical robustness analysis. The proposed approach is validated by the forming of a series of cup products using the collected material. The observed experimental scatter can be reproduced efficiently using FE simulations, demonstrating the potential of the modeling approach and robustness analysis in general.
Original languageEnglish
Title of host publicationIDDRG 2013 Conference
Subtitle of host publicationJune 2–5, 2013, Zurich, Switzerland
EditorsP. Hora
Place of PublicationZurich
PublisherETH Zurich
Publication statusPublished - 2 Jun 2013
EventInternational Deep Drawing Research Group annual conference, IDDRG 2013 - Zurich, Switzerland
Duration: 2 Jun 20135 Jun 2013


ConferenceInternational Deep Drawing Research Group annual conference, IDDRG 2013
Abbreviated titleIDDRG 2013


Dive into the research topics of 'Accounting for material scatter in sheet metal forming simulations'. Together they form a unique fingerprint.

Cite this