Abstract
Recently developed appearance descriptors offer the opportunity for efficient and robust facial expression recognition. In this paper we investigate the merits of the family of local binary pattern descriptors for FACS Action-Unit (AU) detection. We compare Local Binary Patterns (LBP) and Local Phase Quantisation (LPQ) for static AU analysis. To encode facial expression dynamics, we extend the purely spatial representation LPQ to a dynamic texture descriptor which we call Local Phase Quantisation from Three Orthogonal Planes (LPQ-TOP), and compare this with the Local Binary Patterns from Three Orthogonal Planes (LBP-TOP). The efficiency of these descriptors is evaluated by a fully automatic AU detection system and tested on posed and spontaneous expression data collected from the MMI and SEMAINE databases. Results show that the systems based on LPQ achieve higher accuracy rate than those using LBP, and that the systems that utilise dynamic appearance descriptors outperform those that use static appearance descriptors. Overall, our proposed LPQ-TOP method outperformed all other tested methods.
Original language | Undefined |
---|---|
Title of host publication | IEEE International Conference on Automatic Face & Gesture Recognition and Workshops (FG 2011) |
Place of Publication | USA |
Publisher | IEEE |
Pages | 314-321 |
Number of pages | 8 |
ISBN (Print) | 978-1-4244-9140-7 |
DOIs | |
Publication status | Published - Mar 2011 |
Event | 9th IEEE International Conference on Automatic Face and Gesture Recognition, FG 2011 - Santa Barbara, United States Duration: 21 Mar 2011 → 25 Mar 2011 Conference number: 9 |
Publication series
Name | |
---|---|
Publisher | IEEE Computer Society |
Conference
Conference | 9th IEEE International Conference on Automatic Face and Gesture Recognition, FG 2011 |
---|---|
Abbreviated title | FG |
Country/Territory | United States |
City | Santa Barbara |
Period | 21/03/11 → 25/03/11 |
Keywords
- METIS-285030
- IR-79434
- Face Recognition
- Gold
- Image sequences
- Feature extraction
- HMI-MI: MULTIMODAL INTERACTIONS
- Face
- Pixel
- EWI-21329
- EC Grant Agreement nr.: FP7/231287
- EC Grant Agreement nr.: FP7/211486
- Histograms