TY - JOUR
T1 - Adhesion and growth of electrically-active cortical neurons on polyethyleimine patterns microprinted on PEO-PPO-PEO triblockcopolymer-coated hydrophobic surfaces
AU - Ruardij, T.G.
AU - van den Boogaart, M.A.F.
AU - Rutten, W.
PY - 2002
Y1 - 2002
N2 - This paper describes the adhesion and growth of dissociated cortical neurons on chemically patterned surfaces over a time period of 30 days. The presence of neurons was demonstrated by measurement of spontaneous bioelectrical activity on a micropatterned multielectrode array. Chemical patterns were prepared with a combination of neurophobic layers of polyethylenoxide-polypropylenoxide-polyethylenoxide (PEO-PPO-PEO) triblockcopolymers adsorbed onto hydrophobic surfaces and neurophilic microprinted tracks of polyethylenimine (PEI). Results showed that commercially available PEO-PPO-PEO triblockcopolymers F108 and F127 (Synperonics, ICI) significantly reduced the adhesion of neuronal tissue when adsorbed on hydrophobic Polyimide (PI) and Fluorocarbon (FC) surfaces over a time period of eight days. In general, both F108- and F127-coated PI displayed equal or better neurophobic background properties after 30 days. Viability of neuronal tissue after 30 days on PEI microprinted F108- and F127-coated PI was comparable with relatively high viability factors between 0.9 and 1 (scale from 0 to 1). Summarizing, the strategy to combine the neurophobic adsorbed triblock-copolymers F108 and F127 onto hydrophobic surfaces with neurophilic microprinted PEI resulted in relatively long-term neuronal pattern preservation with high numbers of viable neurons present after 30 days.
AB - This paper describes the adhesion and growth of dissociated cortical neurons on chemically patterned surfaces over a time period of 30 days. The presence of neurons was demonstrated by measurement of spontaneous bioelectrical activity on a micropatterned multielectrode array. Chemical patterns were prepared with a combination of neurophobic layers of polyethylenoxide-polypropylenoxide-polyethylenoxide (PEO-PPO-PEO) triblockcopolymers adsorbed onto hydrophobic surfaces and neurophilic microprinted tracks of polyethylenimine (PEI). Results showed that commercially available PEO-PPO-PEO triblockcopolymers F108 and F127 (Synperonics, ICI) significantly reduced the adhesion of neuronal tissue when adsorbed on hydrophobic Polyimide (PI) and Fluorocarbon (FC) surfaces over a time period of eight days. In general, both F108- and F127-coated PI displayed equal or better neurophobic background properties after 30 days. Viability of neuronal tissue after 30 days on PEI microprinted F108- and F127-coated PI was comparable with relatively high viability factors between 0.9 and 1 (scale from 0 to 1). Summarizing, the strategy to combine the neurophobic adsorbed triblock-copolymers F108 and F127 onto hydrophobic surfaces with neurophilic microprinted PEI resulted in relatively long-term neuronal pattern preservation with high numbers of viable neurons present after 30 days.
U2 - 10.1109/TNB.2002.806921
DO - 10.1109/TNB.2002.806921
M3 - Article
SN - 1536-1241
VL - 1
SP - 1
EP - 8
JO - IEEE transactions on nanobioscience
JF - IEEE transactions on nanobioscience
IS - 1
ER -