Abstract
There is an evident need in the biomedical field to develop (new) materials with tailored
properties for specific applications. In addition it is essential to be able to process these
materials into desired two- and three-dimensional shapes and (micro)structures.
Microfabrication, and especially soft lithography, allows the creation of two-dimensional
microstructures with features having size scales that match the dimensions of
microorganisms and of individual cells of more complex organisms. Using twodimensional
microstructured surfaces, investigations in the biomedical field involving cells,
proteins and other biomolecules have been successfully conducted. Examples include
microfluidics-based biological systems, microarrays and tissue engineering applications.
Tissue engineering requires a three-dimensional scaffold, and multiple layers of
two-dimensional microstructures have been stacked to realize this. However, significantly
more reproducible three-dimensional structures can be obtained by stereolithography. This
rapid prototyping technique allows creating designed scaffolding structures at high
resolutions of upto 20 m. Unfortunately, most resins available for stereolithography do not
yield the flexible and elastic biodegradable network materials that are required for the
engineering of soft tissues or organs.
This thesis describes the development of poly(trimethylene carbonate) (PTMC) macromers,
their formulation into photo-crosslinkable resins and their processing into designed flexible
and elastic creep-resistant structures.
Original language | English |
---|---|
Qualification | Doctor of Philosophy |
Awarding Institution |
|
Supervisors/Advisors |
|
Award date | 8 Jul 2011 |
Place of Publication | Enschede |
Publisher | |
Print ISBNs | 978-90-365-3219-8 |
DOIs | |
Publication status | Published - 8 Jul 2011 |