Abstract
We report on nanoscale order-disorder transitions of hard segments and their domains composed of 4,4′-methylenebis(phenyl isocyanate) - 1,4-butanediol (MDI-BD), in polycaprolactone-based (Mn = 2000 g/mol) polyurethanes (PCL-PUs), when the free surface is pre-oriented by cryo-microtoming of the material. Morphological variations of the hard domains as a function of temperature and the anisotropy of surface morphology features are captured by employing Atomic Force Microscopy (AFM) stiffness imaging by PeakForce Quantitative Nanomechanical Mapping (PF-QNM). The AFM imaging is supported by WAXS, SAXS, FTIR, and DSC measurements. The experimental results show that hard domains initially grown at the surface break apart at elevated temperatures (65 °C) and cannot be re-grown upon cooling. They require new microtoming to repeat the growth scenario. The detailed step-by-step submicron scale observations of the surfaces serve to show importance of the influence that microtoming and the time after its completion have on surface morphology, and that these shall be considered when studying polymer materials microscopically.
Original language | English |
---|---|
Article number | 107961 |
Journal | Polymer testing |
Volume | 120 |
DOIs | |
Publication status | Published - Mar 2023 |
Keywords
- Microtoming
- Oriented hard domains
- PeakForce AFM
- Polyurethane
- Temperature
- UT-Gold-D