TY - BOOK
T1 - Algebraic Aspects of Families of Fuzzy Languages
AU - Asveld, Peter R.J.
PY - 2001/2
Y1 - 2001/2
N2 - We study operations on fuzzy languages such as union, concatenation, Kleene $\star$, intersection with regular fuzzy languages, and several kinds of (iterated) fuzzy substitution. Then we consider families of fuzzy languages, closed under a fixed collection of these operations, which results in the concept of full Abstract Family of Fuzzy Languages or full AFFL. This algebraic structure is the fuzzy counterpart of the notion of full Abstract Family of Languages that has been encountered frequently in investigating families of crisp (i.e., non-fuzzy) languages. Some simpler and more complicated algebraic structures (such as full substitution-closed AFFL, full super-AFFL, full hyper-AFFL) will be considered as well.
In the second part of the paper we focus our attention to full AFFL's closed under iterated parallel fuzzy substitution, where the iterating process is prescribed by given crisp control languages. Proceeding inductively over the family of these control languages, yields an infinite sequence of full AFFL-structures with increasingly stronger
closure properties.
AB - We study operations on fuzzy languages such as union, concatenation, Kleene $\star$, intersection with regular fuzzy languages, and several kinds of (iterated) fuzzy substitution. Then we consider families of fuzzy languages, closed under a fixed collection of these operations, which results in the concept of full Abstract Family of Fuzzy Languages or full AFFL. This algebraic structure is the fuzzy counterpart of the notion of full Abstract Family of Languages that has been encountered frequently in investigating families of crisp (i.e., non-fuzzy) languages. Some simpler and more complicated algebraic structures (such as full substitution-closed AFFL, full super-AFFL, full hyper-AFFL) will be considered as well.
In the second part of the paper we focus our attention to full AFFL's closed under iterated parallel fuzzy substitution, where the iterating process is prescribed by given crisp control languages. Proceeding inductively over the family of these control languages, yields an infinite sequence of full AFFL-structures with increasingly stronger
closure properties.
KW - Fuzzy languages
KW - Closure properties
KW - Full Abstract Family of Fuzzy Languages (Full AFFL)
KW - Controlled iterated fuzzy substitution
KW - Infinite hierarchy
M3 - Report
T3 - CTIT Technical Report Series
BT - Algebraic Aspects of Families of Fuzzy Languages
PB - Centre for Telematics and Information Technology (CTIT)
CY - Enschede
ER -