Alleviation of the fermion-sign problem by optimization of many-body wave functions

C. J. Umrigar*, Julien Toulouse, Claudia Filippi, S. Sorella, R. G. Hennig

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

422 Citations (Scopus)
60 Downloads (Pure)

Abstract

We present a simple, robust, and highly efficient method for optimizing all parameters of many-body wave functions in quantum Monte Carlo calculations, applicable to continuum systems and lattice models. Based on a strong zero-variance principle, diagonalization of the Hamiltonian matrix in the space spanned by the wave function and its derivatives determines the optimal parameters. It systematically reduces the fixed-node error, as demonstrated by the calculation of the binding energy of the small but challenging C2 molecule to the experimental accuracy of 0.02 eV.

Original languageEnglish
Article number110201
JournalPhysical review letters
Volume98
Issue number11
DOIs
Publication statusPublished - 15 Mar 2007
Externally publishedYes

Fingerprint

Dive into the research topics of 'Alleviation of the fermion-sign problem by optimization of many-body wave functions'. Together they form a unique fingerprint.

Cite this