An Adaptive Hybrid Control Architecture for an Active Transfemoral Prosthesis

Aniket Mazumder*, Edsko E.G. Hekman, Raffaella Carloni

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

3 Citations (Scopus)
61 Downloads (Pure)

Abstract

The daily usage of a prosthesis for people with an amputation consists of phases of intermittent and continuous walking patterns. Based on this observation, this paper introduces a novel hybrid architecture to control a transfemoral prosthesis, where separate algorithms are used depending on these two different types of movement. For intermittent walking, an interpolation-based algorithm generates control signals for the ankle and knee joints, whereas, for continuous walking, the control signals are generated utilizing an adaptive frequency oscillator. A switching strategy that allows for smooth transitioning from one controller to another is also presented in the design of the architecture. The individual algorithms for the generation of the joints angles' references, along with the switching strategy were experimentally validated on a pilot test with a healthy subject wearing an able-bodied adapter and a designed transfemoral prosthesis. The results demonstrate the capability of the individual algorithms to generate the required control signals while undergoing smooth transitions when required. Through the use of a combination of interpolation and adaptive frequency oscillator-based methods, the controller also demonstrates its response adaptation capability to various walking speeds.

Original languageEnglish
Pages (from-to)52008-52019
Number of pages12
JournalIEEE Access
Volume10
DOIs
Publication statusPublished - 9 May 2022

Keywords

  • control design
  • Prosthetics
  • rehabilitation robotics

Fingerprint

Dive into the research topics of 'An Adaptive Hybrid Control Architecture for an Active Transfemoral Prosthesis'. Together they form a unique fingerprint.

Cite this