Abstract
Convolutional Neural Networks (CNNs) are a very popular class of artificial neural networks. Current CNN models provide remarkable performance and accuracy in image processing applications. However, their computational complexity and memory requirements are discouraging for embedded realtime applications. This paper proposes a highly optimized CNN accelerator for FPGA platforms. The accelerator is designed as a LeNet CNN architecture focusing on minimizing resource usage and power consumption. Moreover, the proposed accelerator shows more than 2x higher throughput in comparison with other FPGA LeNet accelerators with reaching up 14 K images/sec. The proposed accelerator is implemented on the Nexys DDR 4 board and the power consumption is less than 700 mW which is 3x lower than the current LeNet architectures. Therefore, the proposed solution offers higher energy efficiency without sacrificing the throughput of the CNN.
Original language | English |
---|---|
Title of host publication | SIU 2021 - 29th IEEE Conference on Signal Processing and Communications Applications, Proceedings |
Place of Publication | Piscataway, NJ |
Publisher | IEEE |
ISBN (Electronic) | 978-1-6654-3649-6 |
ISBN (Print) | 978-1-6654-3650-2 |
DOIs | |
Publication status | Published - 2021 |
Event | 29th IEEE Conference on Signal Processing and Communications Applications, SIU 2021 - Virtual, Istanbul, Turkey Duration: 9 Jun 2021 → 11 Jun 2021 Conference number: 29 |
Conference
Conference | 29th IEEE Conference on Signal Processing and Communications Applications, SIU 2021 |
---|---|
Abbreviated title | SIU 2021 |
Country/Territory | Turkey |
City | Virtual, Istanbul |
Period | 9/06/21 → 11/06/21 |
Keywords
- 2022 OA procedure
- CNN
- FPGA
- LeNet
- Accelerator