An inverse dynamics model for the analysis, reconstruction and prediction of bipedal walking

Bart Koopman, Henk J. Grootenboer, Henk J. de Jongh

Research output: Contribution to journalArticleAcademicpeer-review

144 Citations (Scopus)
662 Downloads (Pure)

Abstract

Walking is a constrained movement which may best be observed during the double stance phase when both feet contact the floor. When analyzing a measured movement with an inverse dynamics model, a violation of these constrains will always occur due to measuring errors and deviations of the segments model from reality, leading to inconsistent results. Consistency is obtained by implementing the constraints into the model. This makes it possible to combine the inverse dynamics model with optimization techniques in order to predict walking patterns or to reconstruct non-measured rotations when only a part of the three-dimensional joint rotations is measured. In this paper the outlines of the extended inverse dynamics method are presented, the constraints which define walking are defined and the optimization procedure is described. The model is applied to analyze a normal walking pattern of which only the hip, knee and ankle flexions/extensions are measured. This input movement is reconstructed to a kinematically and dynamically consistent three-dimensional movement, and the joint forces (including the ground reaction forces) and joint moments of force, needed to bring about this movement are estimated.
Original languageEnglish
Pages (from-to)1369-1376
JournalJournal of biomechanics
Volume28
Issue number11
DOIs
Publication statusPublished - 1995

Cite this