An object-based image analysis approach for comparing tree detection from satellite imagery at different scales; A case study in Sukumba Mali

Nixon N. Nduji*, Valentyn A. Tolpekin, Alfred Stein

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

2 Citations (Scopus)
30 Downloads (Pure)

Abstract

This paper combines an object-based image analysis (OBIA) approach, with markov-random field based-super resolution mapping (MRF-SRM) technique to extract individual tree objects from satellite imagery. Extraction of individual trees in urban and developing cities using satellite imageries has been quite challenging and a subject of active research with many approaches to it. The study area is a part of Sukumba village located in Koutiala district, Mali. The aim is to evaluate the performance comparison of the combined MRF-SRM approach, which was demonstrated for each combination of scale factor and class separability. Due to varying contrast sensitivity, there exist a general limitation in the spatial distribution of land cover data sets derived from most coarse and fine resolution satellite imageries. A 10 m spatial resolution Sentinel-2 and 2 m spatial resolution Worldview-3 satellite images were used for the study. First, the pixel based MRF-SRM classification technique of Tolpekin and Stein, 2009 was applied on both images. Subsequently, the classified SRM thematic results were partitioned into objects (segments) using region growing segmentation algorithm as post a classification procedure. Finally, validation and comparison of the resulting tree objects was done using an object based image analysis approach to determine existential (TP), extensional (FP) and positional (PA) accuracy. For Sentinel-2 image and out of 1787 reference objects, 1214 (TP) was detected and 573 (FP) was undetected. The PA is 6.504 m out of 10 m, total detection error is 0.467 m and the final detection accuracy is 68%. Similarly, for Worldview-3 image and out of 1787 reference objects, 1772 (TP) was detected and 15 (FP) was undetected. The PA is 1.714 m out of 2 m, total detection error is 0.318 m and the final detection accuracy is 99%. The successful approach used in this study will support the capacity of monitoring agricultural change in data sparse regions and developing countries.

Original languageEnglish
Article number100960
JournalRemote Sensing Applications: Society and Environment
Volume30
DOIs
Publication statusPublished - 31 Mar 2023

Keywords

  • Image segmentation
  • Markov random field
  • Super resolution mapping
  • Tree crown detection
  • 2024 OA procedure
  • ITC-HYBRID

Fingerprint

Dive into the research topics of 'An object-based image analysis approach for comparing tree detection from satellite imagery at different scales; A case study in Sukumba Mali'. Together they form a unique fingerprint.

Cite this