An Upper Bound for the Ramsey Number of a Cycle of Length Four Versus Wheels

Surahmat, Edy Tri Baskoro, Saladin Uttunggadewa, Hajo Broersma

Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

7 Citations (Scopus)

Abstract

For given graphs G and H, the Ramsey numberR(G,H) is the smallest positive integer n such that every graph F of n vertices satisfies the following property: either F contains G or the complement of F contains H. In this paper, we show that the Ramsey number R(C4,Wm)≤m+⌈m3⌉+1 for m ≥ 6.
Original languageEnglish
Title of host publicationCombinatorial Geometry and Graph Theory
Subtitle of host publicationIndonesia-Japan Joint Conference, IJCCGGT 2003, Bandung, Indonesia, September 13-16, 2003, Revised Selected Papers
EditorsJin Akiyama, Edy Tri Baskoro, Mikio Kano
Place of PublicationBerlin
PublisherSpringer
Pages181-184
Number of pages3
ISBN (Electronic)978-3-540-30540-8
ISBN (Print)978-3-540-24401-1
DOIs
Publication statusPublished - 2005
EventIndonesia-Japan Joint Conference on Combinatorial Geometry and Graph Theory, IJCCGGT 2003 - Bandung, Indonesia
Duration: 13 Sep 200316 Sep 2003

Publication series

NameLecture Notes in Computer Science
PublisherSpringer
Volume3330
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

ConferenceIndonesia-Japan Joint Conference on Combinatorial Geometry and Graph Theory, IJCCGGT 2003
Abbreviated titleIJCCGGT
CountryIndonesia
CityBandung
Period13/09/0316/09/03

Fingerprint

Ramsey number
Wheel
Upper bound
Cycle
Graph in graph theory
Complement
Integer

Keywords

  • METIS-226159

Cite this

Surahmat, Baskoro, E. T., Uttunggadewa, S., & Broersma, H. (2005). An Upper Bound for the Ramsey Number of a Cycle of Length Four Versus Wheels. In J. Akiyama, E. T. Baskoro, & M. Kano (Eds.), Combinatorial Geometry and Graph Theory: Indonesia-Japan Joint Conference, IJCCGGT 2003, Bandung, Indonesia, September 13-16, 2003, Revised Selected Papers (pp. 181-184). (Lecture Notes in Computer Science; Vol. 3330). Berlin: Springer. https://doi.org/10.1007/978-3-540-30540-8_20
Surahmat ; Baskoro, Edy Tri ; Uttunggadewa, Saladin ; Broersma, Hajo. / An Upper Bound for the Ramsey Number of a Cycle of Length Four Versus Wheels. Combinatorial Geometry and Graph Theory: Indonesia-Japan Joint Conference, IJCCGGT 2003, Bandung, Indonesia, September 13-16, 2003, Revised Selected Papers. editor / Jin Akiyama ; Edy Tri Baskoro ; Mikio Kano. Berlin : Springer, 2005. pp. 181-184 (Lecture Notes in Computer Science).
@inproceedings{e882c6bc78d0440988791ef74b03cba7,
title = "An Upper Bound for the Ramsey Number of a Cycle of Length Four Versus Wheels",
abstract = "For given graphs G and H, the Ramsey numberR(G,H) is the smallest positive integer n such that every graph F of n vertices satisfies the following property: either F contains G or the complement of F contains H. In this paper, we show that the Ramsey number R(C4,Wm)≤m+⌈m3⌉+1 for m ≥ 6.",
keywords = "METIS-226159",
author = "Surahmat and Baskoro, {Edy Tri} and Saladin Uttunggadewa and Hajo Broersma",
year = "2005",
doi = "10.1007/978-3-540-30540-8_20",
language = "English",
isbn = "978-3-540-24401-1",
series = "Lecture Notes in Computer Science",
publisher = "Springer",
pages = "181--184",
editor = "Jin Akiyama and Baskoro, {Edy Tri} and Mikio Kano",
booktitle = "Combinatorial Geometry and Graph Theory",

}

Surahmat, Baskoro, ET, Uttunggadewa, S & Broersma, H 2005, An Upper Bound for the Ramsey Number of a Cycle of Length Four Versus Wheels. in J Akiyama, ET Baskoro & M Kano (eds), Combinatorial Geometry and Graph Theory: Indonesia-Japan Joint Conference, IJCCGGT 2003, Bandung, Indonesia, September 13-16, 2003, Revised Selected Papers. Lecture Notes in Computer Science, vol. 3330, Springer, Berlin, pp. 181-184, Indonesia-Japan Joint Conference on Combinatorial Geometry and Graph Theory, IJCCGGT 2003, Bandung, Indonesia, 13/09/03. https://doi.org/10.1007/978-3-540-30540-8_20

An Upper Bound for the Ramsey Number of a Cycle of Length Four Versus Wheels. / Surahmat; Baskoro, Edy Tri; Uttunggadewa, Saladin; Broersma, Hajo.

Combinatorial Geometry and Graph Theory: Indonesia-Japan Joint Conference, IJCCGGT 2003, Bandung, Indonesia, September 13-16, 2003, Revised Selected Papers. ed. / Jin Akiyama; Edy Tri Baskoro; Mikio Kano. Berlin : Springer, 2005. p. 181-184 (Lecture Notes in Computer Science; Vol. 3330).

Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

TY - GEN

T1 - An Upper Bound for the Ramsey Number of a Cycle of Length Four Versus Wheels

AU - Surahmat, null

AU - Baskoro, Edy Tri

AU - Uttunggadewa, Saladin

AU - Broersma, Hajo

PY - 2005

Y1 - 2005

N2 - For given graphs G and H, the Ramsey numberR(G,H) is the smallest positive integer n such that every graph F of n vertices satisfies the following property: either F contains G or the complement of F contains H. In this paper, we show that the Ramsey number R(C4,Wm)≤m+⌈m3⌉+1 for m ≥ 6.

AB - For given graphs G and H, the Ramsey numberR(G,H) is the smallest positive integer n such that every graph F of n vertices satisfies the following property: either F contains G or the complement of F contains H. In this paper, we show that the Ramsey number R(C4,Wm)≤m+⌈m3⌉+1 for m ≥ 6.

KW - METIS-226159

U2 - 10.1007/978-3-540-30540-8_20

DO - 10.1007/978-3-540-30540-8_20

M3 - Conference contribution

SN - 978-3-540-24401-1

T3 - Lecture Notes in Computer Science

SP - 181

EP - 184

BT - Combinatorial Geometry and Graph Theory

A2 - Akiyama, Jin

A2 - Baskoro, Edy Tri

A2 - Kano, Mikio

PB - Springer

CY - Berlin

ER -

Surahmat, Baskoro ET, Uttunggadewa S, Broersma H. An Upper Bound for the Ramsey Number of a Cycle of Length Four Versus Wheels. In Akiyama J, Baskoro ET, Kano M, editors, Combinatorial Geometry and Graph Theory: Indonesia-Japan Joint Conference, IJCCGGT 2003, Bandung, Indonesia, September 13-16, 2003, Revised Selected Papers. Berlin: Springer. 2005. p. 181-184. (Lecture Notes in Computer Science). https://doi.org/10.1007/978-3-540-30540-8_20