An Upper Bound for the Ramsey Number of a Cycle of Length Four Versus Wheels

Surahmat, Edy Tri Baskoro, Saladin Uttunggadewa, Hajo Broersma

Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

7 Citations (Scopus)

Abstract

For given graphs G and H, the Ramsey numberR(G,H) is the smallest positive integer n such that every graph F of n vertices satisfies the following property: either F contains G or the complement of F contains H. In this paper, we show that the Ramsey number R(C4,Wm)≤m+⌈m3⌉+1 for m ≥ 6.
Original languageEnglish
Title of host publicationCombinatorial Geometry and Graph Theory
Subtitle of host publicationIndonesia-Japan Joint Conference, IJCCGGT 2003, Bandung, Indonesia, September 13-16, 2003, Revised Selected Papers
EditorsJin Akiyama, Edy Tri Baskoro, Mikio Kano
Place of PublicationBerlin
PublisherSpringer
Pages181-184
Number of pages3
ISBN (Electronic)978-3-540-30540-8
ISBN (Print)978-3-540-24401-1
DOIs
Publication statusPublished - 2005
EventIndonesia-Japan Joint Conference on Combinatorial Geometry and Graph Theory, IJCCGGT 2003 - Bandung, Indonesia
Duration: 13 Sep 200316 Sep 2003

Publication series

NameLecture Notes in Computer Science
PublisherSpringer
Volume3330
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

ConferenceIndonesia-Japan Joint Conference on Combinatorial Geometry and Graph Theory, IJCCGGT 2003
Abbreviated titleIJCCGGT
CountryIndonesia
CityBandung
Period13/09/0316/09/03

Keywords

  • METIS-226159

Fingerprint Dive into the research topics of 'An Upper Bound for the Ramsey Number of a Cycle of Length Four Versus Wheels'. Together they form a unique fingerprint.

  • Cite this

    Surahmat, Baskoro, E. T., Uttunggadewa, S., & Broersma, H. (2005). An Upper Bound for the Ramsey Number of a Cycle of Length Four Versus Wheels. In J. Akiyama, E. T. Baskoro, & M. Kano (Eds.), Combinatorial Geometry and Graph Theory: Indonesia-Japan Joint Conference, IJCCGGT 2003, Bandung, Indonesia, September 13-16, 2003, Revised Selected Papers (pp. 181-184). (Lecture Notes in Computer Science; Vol. 3330). Berlin: Springer. https://doi.org/10.1007/978-3-540-30540-8_20