Abstract
Original language | English |
---|---|
Title of host publication | Combinatorial Geometry and Graph Theory |
Subtitle of host publication | Indonesia-Japan Joint Conference, IJCCGGT 2003, Bandung, Indonesia, September 13-16, 2003, Revised Selected Papers |
Editors | Jin Akiyama, Edy Tri Baskoro, Mikio Kano |
Place of Publication | Berlin |
Publisher | Springer |
Pages | 181-184 |
Number of pages | 3 |
ISBN (Electronic) | 978-3-540-30540-8 |
ISBN (Print) | 978-3-540-24401-1 |
DOIs | |
Publication status | Published - 2005 |
Event | Indonesia-Japan Joint Conference on Combinatorial Geometry and Graph Theory, IJCCGGT 2003 - Bandung, Indonesia Duration: 13 Sep 2003 → 16 Sep 2003 |
Publication series
Name | Lecture Notes in Computer Science |
---|---|
Publisher | Springer |
Volume | 3330 |
ISSN (Print) | 0302-9743 |
ISSN (Electronic) | 1611-3349 |
Conference
Conference | Indonesia-Japan Joint Conference on Combinatorial Geometry and Graph Theory, IJCCGGT 2003 |
---|---|
Abbreviated title | IJCCGGT |
Country | Indonesia |
City | Bandung |
Period | 13/09/03 → 16/09/03 |
Fingerprint
Keywords
- METIS-226159
Cite this
}
An Upper Bound for the Ramsey Number of a Cycle of Length Four Versus Wheels. / Surahmat; Baskoro, Edy Tri; Uttunggadewa, Saladin; Broersma, Hajo.
Combinatorial Geometry and Graph Theory: Indonesia-Japan Joint Conference, IJCCGGT 2003, Bandung, Indonesia, September 13-16, 2003, Revised Selected Papers. ed. / Jin Akiyama; Edy Tri Baskoro; Mikio Kano. Berlin : Springer, 2005. p. 181-184 (Lecture Notes in Computer Science; Vol. 3330).Research output: Chapter in Book/Report/Conference proceeding › Conference contribution › Academic › peer-review
TY - GEN
T1 - An Upper Bound for the Ramsey Number of a Cycle of Length Four Versus Wheels
AU - Surahmat, null
AU - Baskoro, Edy Tri
AU - Uttunggadewa, Saladin
AU - Broersma, Hajo
PY - 2005
Y1 - 2005
N2 - For given graphs G and H, the Ramsey numberR(G,H) is the smallest positive integer n such that every graph F of n vertices satisfies the following property: either F contains G or the complement of F contains H. In this paper, we show that the Ramsey number R(C4,Wm)≤m+⌈m3⌉+1 for m ≥ 6.
AB - For given graphs G and H, the Ramsey numberR(G,H) is the smallest positive integer n such that every graph F of n vertices satisfies the following property: either F contains G or the complement of F contains H. In this paper, we show that the Ramsey number R(C4,Wm)≤m+⌈m3⌉+1 for m ≥ 6.
KW - METIS-226159
U2 - 10.1007/978-3-540-30540-8_20
DO - 10.1007/978-3-540-30540-8_20
M3 - Conference contribution
SN - 978-3-540-24401-1
T3 - Lecture Notes in Computer Science
SP - 181
EP - 184
BT - Combinatorial Geometry and Graph Theory
A2 - Akiyama, Jin
A2 - Baskoro, Edy Tri
A2 - Kano, Mikio
PB - Springer
CY - Berlin
ER -