Analytic model for the electrowetting properties of oil-water-solid systems

Andrea Cavalli, Bijoy Bera, Dirk van den Ende, Frieder Mugele

Research output: Contribution to journalArticleAcademicpeer-review

10 Citations (Scopus)
149 Downloads (Pure)

Abstract

The competitive wetting of oil and aqueous electrolytes on solid surfaces depends strongly on the surface charge of the solid-water and the water-oil interface. This charge density is generally not known a priori but changes as ions adsorb or desorb from or to the interfaces, depending on the composition of the fluid and the thickness of thin films of the aqueous phase that frequently arise on hydrophilic surfaces, such as minerals. We analyze the wettability of such systems by coupling standard Derjaguin-Landau-Verwey-Overbeek theory to a linearized charge regulation model. The latter is found to play an important role. By linearizing electrostatic interactions as well, we obtain a fully analytic description of transitions between different wetting scenarios as a function of the surface potentials at infinite separation and the charge regulation parameters of the two interfaces. Depending on the specific values of the regulation parameters, charge regulation is found to extend the parameter range of partial wetting and complete wetting at the expense of pseudopartial wetting and metastable wetting configurations, respectively. A specific implementation of the model is discussed for mica-water-alkane systems that was investigated in recent experiments.
Original languageEnglish
Article number042606
Pages (from-to)1-11
JournalPhysical review E: Statistical, nonlinear, and soft matter physics
Volume93
Issue number042606
DOIs
Publication statusPublished - 2016

Fingerprint

Dive into the research topics of 'Analytic model for the electrowetting properties of oil-water-solid systems'. Together they form a unique fingerprint.

Cite this