@article{07d78ddbb3c7482db775faae3f62a42f,
title = "Analytical model of fully developed wind farms in conventionally neutral atmospheric boundary layers",
abstract = "The wind energy industry relies on computationally efficient engineering-type models to design wind farms. Typically these models do not account for the effect of atmospheric stratification in either the boundary layer or the free atmosphere. This study proposes a new analytical model for fully developed wind-turbine arrays in conventionally neutral atmospheric boundary layers frequently encountered in nature. The model captures the effect of the free-atmosphere stratification, Coriolis force, wind farm layout and turbine operating condition on the wind farm performance. The model is developed based on the physical insight derived from large-eddy simulations. We demonstrate that the geostrophic drag law (GDL) for flow over flat terrain can be extended to flow over fully developed wind farm arrays. The presence of a vast wind farm significantly increases the wind farm friction velocity compared with flow over flat terrain, which is modelled by updated coefficients in the GDL. The developed model reliably captures the vertical wind speed profile inside the wind farm. Furthermore, the power production trends observed in simulations are reliably reproduced. The wind farm performance, normalized by the geostrophic wind speed, decreases as the free-atmosphere thermal stability increases or the Coriolis force decreases. In addition, we find that the optimal wind farm performance is obtained at a lower thrust coefficient than the Betz limit, which indicates that optimal operating conditions for turbines in a wind farm are different than for a single turbine.",
keywords = "atmospheric flows, turbulent boundary layers, wakes, UT-Hybrid-D",
author = "Chao Li and Luoqin Liu and Xiyun Lu and Stevens, {Richard J. A. M.}",
note = "Funding Information: This work was supported by the Hundred Talents Program of the Chinese Academy of Sciences (CAS), the National Natural Science Foundation of China Grant (No. 11621202), the Anhui NARI Jiyuan Electric Power Grid Technology Co. Ltd. through the Joint Laboratory of USTC-NARI, the Shell-NWO/FOM-initiative Computational sciences for energy research of Shell and Chemical Sciences, Earth and Live Sciences, Physical Sciences, FOM and STW, and an STW VIDI Grant (No. 14868). NWO Domain Science sponsored this work to use the national computer facilities. We acknowledge PRACE for awarding us access to MareNostrum4 in Barcelona, Spain. This research was also supported by the advanced computing resources provided by the Supercomputing Center of the USTC. Funding Information: This work was supported by the Hundred Talents Program of the Chinese Academy of Sciences (CAS), the National Natural Science Foundation of China Grant (No. 11621202), the Anhui NARI Jiyuan Electric Power Grid Technology Co. Ltd. through the Joint Laboratory of USTC-NARI, the Shell-NWO/FOM-initiative Computational sciences for energy research of Shell and Chemical Sciences, Earth and Live Sciences, Physical Sciences, FOM and STW, and an STW VIDI Grant (No. 14868). NWO Domain Science sponsored this work to use the national computer facilities. We acknowledge PRACE for awarding us access to MareNostrum4 in Barcelona, Spain. This research was also supported by the advanced computing resources provided by the Supercomputing Center of the USTC. Publisher Copyright: {\textcopyright} 2022 The Author(s). Published by Cambridge University Press.",
year = "2022",
month = oct,
day = "10",
doi = "10.1017/jfm.2022.732",
language = "English",
volume = "948",
pages = "1--18",
journal = "Journal of fluid mechanics",
issn = "0022-1120",
publisher = "Cambridge University Press",
}