Angle-dependent AFM single-chain pulling of adsorbed macromolecules from planar surfaces unveils the signature of an adsorption-desorption transition

Lucie Grebikova, Stuart G. Whittington, G. Julius Vancso* (Corresponding Author)

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

12 Citations (Scopus)
77 Downloads (Pure)

Abstract

The adsorption-desorption behavior of polymer chains is at the heart of macromolecular surface science and technology. With the current developments in atomic force microscopy (AFM), it has now become possible to address the desorption problem from the perspective of a single macromolecule. Here, we report on desorption of single polymer chains on planar surfaces by AFM-based single molecule force spectroscopy (SMFS) as a function of the pulling angle with respect to the surface-normal direction. SMFS experiments were performed in water with various substrates using different polymers covalently attached to the AFM probe tip. End-grafting at the AFM tip was achieved by surface-initiated polymerization using initiator functionalized tips. We found that the desorption force increases with a decreasing pulling angle, i.e., an enhanced adhesion of the polymer chain was observed. The magnitude of the desorption force shows a weak angular dependence at pulling angles close to the surface normal. A significant increase of the force is observed at shallower pulling from a certain pulling angle. This behavior carries the signature of an adsorption-desorption transition. The angular dependence of the normalized desorption force exhibits a universal behavior. We compared and interpreted our results using theoretical predictions for single-chain adsorption-desorption transitions.

Original languageEnglish
Pages (from-to)6408-6415
Number of pages8
JournalJournal of the American Chemical Society
Volume140
Issue number20
DOIs
Publication statusPublished - 23 May 2018

Keywords

  • UT-Hybrid-D

Fingerprint

Dive into the research topics of 'Angle-dependent AFM single-chain pulling of adsorbed macromolecules from planar surfaces unveils the signature of an adsorption-desorption transition'. Together they form a unique fingerprint.

Cite this