### Abstract

We consider the family of difference equations H

_{n}= H{_{n-1}} + H{_{n-2}} + $\sum_{j=0}^k$ γ_{j}*n*{^{(j)}}with H_{0}= H_{1}= 1, n^{(j) }= n(n-1)(n-2)...(n-j+1) for j≥1 and n^{(0)}= 1. We express*H*in terms of the Fibonacci numbers and in the parameters γ1, . . . ,γk._{n}Original language | English |
---|---|

Pages (from-to) | 361-364 |

Number of pages | 4 |

Journal | The Fibonacci Quarterly |

Volume | 25 |

Issue number | 4 |

Publication status | Published - 1987 |

### Keywords

- HMI-SLT: Speech and Language Technology
- MSC-11B39

## Fingerprint Dive into the research topics of 'Another Family of Fibonacci-like Sequences'. Together they form a unique fingerprint.

## Cite this

Asveld, P. R. J. (1987). Another Family of Fibonacci-like Sequences.

*The Fibonacci Quarterly*,*25*(4), 361-364.