### Abstract

_{n}= H{

_{n-1}} + H{

_{n-2}} + $\sum_{j=0}^k$ γ

_{j}

*n*{

^{(j)}}with H

_{0}= H

_{1}= 1, n

^{(j) }= n(n-1)(n-2)...(n-j+1) for j≥1 and n

^{(0)}= 1. We express

*H*in terms of the Fibonacci numbers and in the parameters γ1, . . . ,γk.

_{n}Original language | English |
---|---|

Pages (from-to) | 361-364 |

Number of pages | 4 |

Journal | The Fibonacci Quarterly |

Volume | 25 |

Issue number | 4 |

Publication status | Published - 1987 |

### Fingerprint

### Keywords

- HMI-SLT: Speech and Language Technology
- MSC-11B39

### Cite this

*The Fibonacci Quarterly*,

*25*(4), 361-364.

}

*The Fibonacci Quarterly*, vol. 25, no. 4, pp. 361-364.

**Another Family of Fibonacci-like Sequences.** / Asveld, Peter R.J.

Research output: Contribution to journal › Article › Academic › peer-review

TY - JOUR

T1 - Another Family of Fibonacci-like Sequences

AU - Asveld, Peter R.J.

N1 - In the typesetting process an error occurred: op page 362 in line +2, the second summation should be from $i=0$ to $k$ and the third one from $l=0$ to $i$; cf. http://eprints.eemcs.utwente.nl/5256 page 2, line +6.

PY - 1987

Y1 - 1987

N2 - We consider the family of difference equations Hn = H{n-1} + H{n-2} + $\sum_{j=0}^k$ γjn{(j)} with H0 = H1 = 1, n(j) = n(n-1)(n-2)...(n-j+1) for j≥1 and n(0) = 1. We express Hn in terms of the Fibonacci numbers and in the parameters γ1, . . . ,γk.

AB - We consider the family of difference equations Hn = H{n-1} + H{n-2} + $\sum_{j=0}^k$ γjn{(j)} with H0 = H1 = 1, n(j) = n(n-1)(n-2)...(n-j+1) for j≥1 and n(0) = 1. We express Hn in terms of the Fibonacci numbers and in the parameters γ1, . . . ,γk.

KW - HMI-SLT: Speech and Language Technology

KW - MSC-11B39

M3 - Article

VL - 25

SP - 361

EP - 364

JO - The Fibonacci Quarterly

JF - The Fibonacci Quarterly

SN - 0015-0517

IS - 4

ER -